Mathematical simulation of nonlinear physical and abstract systems is a very vital process for predicting the solution behavior of fractional partial differential equations(FPDEs)corresponding to different application...Mathematical simulation of nonlinear physical and abstract systems is a very vital process for predicting the solution behavior of fractional partial differential equations(FPDEs)corresponding to different applications in science and engineering. In this paper, an attractive reliable analytical technique, the conformable residual power series, is implemented for constructing approximate series solutions for a class of nonlinear coupled FPDEs arising in fluid mechanics and fluid flow, which are often designed to demonstrate the behavior of weakly nonlinear and long waves and describe the interaction of shallow water waves. In the proposed technique the n-truncated representation is substituted into the original system and it is assumed the(n-1) conformable derivative of the residuum is zero. This allows us to estimate coefficients of truncation and successively add the subordinate terms in the multiple fractional power series with a rapidly convergent form. The influence, capacity, and feasibility of the presented approach are verified by testing some real-world applications. Finally, highlights and some closing comments are attached.展开更多
In these analyses,we consider the time-fractional Fisher equation in two-dimensional space.Through the use of the Riemann-Liouville derivative approach,the well-known Lie point symmetries of the utilized equation are ...In these analyses,we consider the time-fractional Fisher equation in two-dimensional space.Through the use of the Riemann-Liouville derivative approach,the well-known Lie point symmetries of the utilized equation are derived.Herein,we overturn the fractional fisher model to a fractional differential equation of nonlinear type by considering its Lie point symmetries.The diminutive equation’s derivative is in the Erdélyi-Kober sense,whilst we use the technique of the power series to conclude explicit solutions for the diminutive equations for the first time.The conservation laws for the dominant equation are built using a novel conservation theorem.Several graphical countenances were utilized to award a visual performance of the obtained solutions.Finally,some concluding remarks and future recommendations are utilized.展开更多
基金Authors gratefully acknowledge Ajman University for providing facilities for our research under Grant Ref.No.2019-IRG-HBS-11.
文摘Mathematical simulation of nonlinear physical and abstract systems is a very vital process for predicting the solution behavior of fractional partial differential equations(FPDEs)corresponding to different applications in science and engineering. In this paper, an attractive reliable analytical technique, the conformable residual power series, is implemented for constructing approximate series solutions for a class of nonlinear coupled FPDEs arising in fluid mechanics and fluid flow, which are often designed to demonstrate the behavior of weakly nonlinear and long waves and describe the interaction of shallow water waves. In the proposed technique the n-truncated representation is substituted into the original system and it is assumed the(n-1) conformable derivative of the residuum is zero. This allows us to estimate coefficients of truncation and successively add the subordinate terms in the multiple fractional power series with a rapidly convergent form. The influence, capacity, and feasibility of the presented approach are verified by testing some real-world applications. Finally, highlights and some closing comments are attached.
文摘In these analyses,we consider the time-fractional Fisher equation in two-dimensional space.Through the use of the Riemann-Liouville derivative approach,the well-known Lie point symmetries of the utilized equation are derived.Herein,we overturn the fractional fisher model to a fractional differential equation of nonlinear type by considering its Lie point symmetries.The diminutive equation’s derivative is in the Erdélyi-Kober sense,whilst we use the technique of the power series to conclude explicit solutions for the diminutive equations for the first time.The conservation laws for the dominant equation are built using a novel conservation theorem.Several graphical countenances were utilized to award a visual performance of the obtained solutions.Finally,some concluding remarks and future recommendations are utilized.