期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Real-Time Multi-Class Infection Classification for Respiratory Diseases 被引量:1
1
作者 Ahmed El.Shafee Walid El-Shafai +3 位作者 Abdulaziz Alarifi mohammed amoon Aman Singh Moustafa H.Aly 《Computers, Materials & Continua》 SCIE EI 2022年第11期4157-4177,共21页
Real-time disease prediction has emerged as the main focus of study in the field of computerized medicine.Intelligent disease identification framework can assist medical practitioners in diagnosing disease in a way th... Real-time disease prediction has emerged as the main focus of study in the field of computerized medicine.Intelligent disease identification framework can assist medical practitioners in diagnosing disease in a way that is reliable,consistent,and timely,successfully lowering mortality rates,particularly during endemics and pandemics.To prevent this pandemic’s rapid and widespread,it is vital to quickly identify,confine,and treat affected individuals.The need for auxiliary computer-aided diagnostic(CAD)systems has grown.Numerous recent studies have indicated that radiological pictures contained critical information regarding the COVID-19 virus.Utilizing advanced convolutional neural network(CNN)architectures in conjunction with radiological imaging makes it possible to provide rapid,accurate,and extremely useful susceptible classifications.This research work proposes a methodology for real-time detection of COVID-19 infections caused by the Corona Virus.The purpose of this study is to offer a two-way COVID-19(2WCD)diagnosis prediction deep learning system that is built on Transfer Learning Methodologies(TLM)and features customized fine-tuning on top of fully connected layered pre-trained CNN architectures.2WCD has applied modifications to pre-trained models for better performance.It is designed and implemented to improve the generalization ability of the classifier for binary and multi-class models.Along with the ability to differentiate COVID-19 and No-Patient in the binary class model and COVID-19,No-Patient,and Pneumonia in the multi-class model,our framework is augmented with a critical add-on for visually demonstrating infection in any tested radiological image by highlighting the affected region in the patient’s lung in a recognizable color pattern.The proposed system is shown to be extremely robust and reliable for real-time COVID-19 diagnostic prediction.It can also be used to forecast other lung-related disorders.As the system can assist medical practitioners in diagnosing the greatest number of patients in the shortestamount of time, radiologists can also be used or published online to assistany less-experienced individual in obtaining an accurate immediate screeningfor their radiological images. 展开更多
关键词 COVID-19 real-time computerized disease prediction intelligent disease identification framework CAD systems X-rays CT-scans CNN real-time detection of COVID-19 infections
下载PDF
An Efficient Intrusion Detection Framework in Software-Defined Networking for Cybersecurity Applications
2
作者 Ghalib H.Alshammri Amani K.Samha +2 位作者 Ezz El-Din Hemdan mohammed amoon Walid El-Shafai 《Computers, Materials & Continua》 SCIE EI 2022年第8期3529-3548,共20页
Network management and multimedia data mining techniques have a great interest in analyzing and improving the network traffic process.In recent times,the most complex task in Software Defined Network(SDN)is security,w... Network management and multimedia data mining techniques have a great interest in analyzing and improving the network traffic process.In recent times,the most complex task in Software Defined Network(SDN)is security,which is based on a centralized,programmable controller.Therefore,monitoring network traffic is significant for identifying and revealing intrusion abnormalities in the SDN environment.Consequently,this paper provides an extensive analysis and investigation of the NSL-KDD dataset using five different clustering algorithms:K-means,Farthest First,Canopy,Density-based algorithm,and Exception-maximization(EM),using the Waikato Environment for Knowledge Analysis(WEKA)software to compare extensively between these five algorithms.Furthermore,this paper presents an SDN-based intrusion detection system using a deep learning(DL)model with the KDD(Knowledge Discovery in Databases)dataset.First,the utilized dataset is clustered into normal and four major attack categories via the clustering process.Then,a deep learning method is projected for building an efficient SDN-based intrusion detection system.The results provide a comprehensive analysis and a flawless reasonable study of different kinds of attacks incorporated in the KDD dataset.Similarly,the outcomes reveal that the proposed deep learning method provides efficient intrusion detection performance compared to existing techniques.For example,the proposed method achieves a detection accuracy of 94.21%for the examined dataset. 展开更多
关键词 Deep neural network DL WEKA network traffic intrusion and anomaly detection SDN clustering and classification KDD dataset
下载PDF
A Fractional Fourier Based Medical Image Authentication Approach
3
作者 Fayez Alqahtani mohammed amoon Walid El-Shafai 《Computers, Materials & Continua》 SCIE EI 2022年第2期3133-3150,共18页
Patient medical information in all forms is crucial to keep private and secure,particularly when medical data communication occurs through insecure channels.Therefore,there is a bad need for protecting and securing th... Patient medical information in all forms is crucial to keep private and secure,particularly when medical data communication occurs through insecure channels.Therefore,there is a bad need for protecting and securing the color medical images against impostors and invaders.In this paper,an optical medical image security approach is introduced.It is based on the optical bit-plane Jigsaw Transform(JT)and Fractional Fourier Transform(FFT).Different kernels with a lone lens and a single arbitrary phase code are exploited in this security approach.A preceding bit-plane scrambling process is conducted on the input color medical images prior to the JT and FFT processes to accomplish a tremendous level of robustness and security.To confirm the efficiency of the suggested security approach for secure color medical image communication,various assessments on different color medical images are examined based on different statistical security metrics.Furthermore,a comparative analysis is introduced between the suggested security approach and other conventional cryptography protocols.The simulation outcomes acquired for performance assessment demonstrate that the suggested security approach is highly secure.It has excellent encryption/decryption performance and superior security results compared to conventional cryptography approaches with achieving recommended values of average entropy and correlation coefficient of 7.63 and 0.0103 for encrypted images. 展开更多
关键词 Medical image security ENCRYPTION JT FFT CRYPTOSYSTEM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部