Purpose-Ensemble methods have been widely used in the field of pattern recognition due to the difficulty offinding a single classifier that performs well on a wide variety of problems.Despite the effectiveness of thes...Purpose-Ensemble methods have been widely used in the field of pattern recognition due to the difficulty offinding a single classifier that performs well on a wide variety of problems.Despite the effectiveness of thesetechniques,studies have shown that ensemble methods generate a large number of hypotheses and thatcontain redundant classifiers in most cases.Several works proposed in the state of the art attempt to reduce allhypotheses without affecting performance.Design/methodology/approach-In this work,the authors are proposing a pruning method that takes intoconsideration the correlation between classifiers/classes and each classifier with the rest of the set.The authorshave used the random forest algorithm as trees-based ensemble classifiers and the pruning was made by atechnique inspired by the CFS(correlation feature selection)algorithm.Findings-The proposed method CES(correlation-based Ensemble Selection)was evaluated onten datasets from the UCI machine learning repository,and the performances were compared to sixensemble pruning techniques.The results showed that our proposed pruning method selects a smallensemble in a smaller amount of time while improving classification rates compared to the state-of-the-artmethods.Originality/value-CES is a new ordering-based method that uses the CFS algorithm.CES selects,in a shorttime,a small sub-ensemble that outperforms results obtained from the whole forest and the other state-of-thearttechniques used in this study.展开更多
基金The authors would like to thank the Directorate-General of Scientific Research and Technological Development(Direction Generale de la Recherche Scientifique et du Developpement Technologique,DGRSDT,URL:www.dgrsdt.dz,Algeria)for the financial assistance towards this research.
文摘Purpose-Ensemble methods have been widely used in the field of pattern recognition due to the difficulty offinding a single classifier that performs well on a wide variety of problems.Despite the effectiveness of thesetechniques,studies have shown that ensemble methods generate a large number of hypotheses and thatcontain redundant classifiers in most cases.Several works proposed in the state of the art attempt to reduce allhypotheses without affecting performance.Design/methodology/approach-In this work,the authors are proposing a pruning method that takes intoconsideration the correlation between classifiers/classes and each classifier with the rest of the set.The authorshave used the random forest algorithm as trees-based ensemble classifiers and the pruning was made by atechnique inspired by the CFS(correlation feature selection)algorithm.Findings-The proposed method CES(correlation-based Ensemble Selection)was evaluated onten datasets from the UCI machine learning repository,and the performances were compared to sixensemble pruning techniques.The results showed that our proposed pruning method selects a smallensemble in a smaller amount of time while improving classification rates compared to the state-of-the-artmethods.Originality/value-CES is a new ordering-based method that uses the CFS algorithm.CES selects,in a shorttime,a small sub-ensemble that outperforms results obtained from the whole forest and the other state-of-thearttechniques used in this study.