In this paper, we establish the existence of at least four distinct solutions to an elliptic problem with singular cylindrical potential, a concave term, and critical Caffarelli-Kohn-Nirenberg exponent, by using the N...In this paper, we establish the existence of at least four distinct solutions to an elliptic problem with singular cylindrical potential, a concave term, and critical Caffarelli-Kohn-Nirenberg exponent, by using the Nehari manifold and mountain pass theorem.展开更多
In this paper, we establish the existence of at least four distinct solutions to an Kirchhoff type problems involving the critical Caffareli-Kohn-Niremberg exponent, concave term and sign-changing weights, by using th...In this paper, we establish the existence of at least four distinct solutions to an Kirchhoff type problems involving the critical Caffareli-Kohn-Niremberg exponent, concave term and sign-changing weights, by using the Nehari manifold and mountain pass theorem.展开更多
In the present paper, an elliptic equation with Hardy-Sobolev critical exponent, Hardy-Sobolev-Maz’ya potential and sign-changing weights, is considered. By using the Nehari manifold and mountain pass theorem, the ex...In the present paper, an elliptic equation with Hardy-Sobolev critical exponent, Hardy-Sobolev-Maz’ya potential and sign-changing weights, is considered. By using the Nehari manifold and mountain pass theorem, the existence of at least four distinct solutions is obtained.展开更多
This research work considers the following inequalities: <i>λ</i><em>A</em>(<i>a</i>,<i>b</i>) + (1-<i>λ</i>)<em>C</em>(<i>a</i>,&l...This research work considers the following inequalities: <i>λ</i><em>A</em>(<i>a</i>,<i>b</i>) + (1-<i>λ</i>)<em>C</em>(<i>a</i>,<i>b</i>) ≤ <span style="text-decoration:overline;">C</span>(<i>a</i>,<i>b</i>) ≤ <i>μ</i><em>A</em>(<i>a</i>,<i>b</i>) + (1-<i>μ</i>)<em>C</em>(<i>a</i>,<i>b</i>) and <em>C</em>[<i>λ</i><em>a</em> + (1-<i>λ</i>)<em>b</em>, <i>λ</i><em>b</em> + (1-<i>λ</i>)<em>a</em>] ≤ <span style="text-decoration:overline;">C</span>(<i>a</i>,<i>b</i>) ≤ <em>C</em>[<i>μ</i><em>a</em> + (1-<i>μ</i>)<em>b</em>, <i>μ</i><em>b</em> + (1-<i>μ</i>)<em>a</em>] with <img src="Edit_ce892b1d-c056-44ea-a929-31dbcd1b0e91.bmp" alt="" /> . The researchers attempt to find an answer as to what are the best possible parameters <i>λ</i>, <i>μ</i> that (1.1) and (1.2) can be hold? The main tool is the optimization of some suitable functions that we seek to find out. By searching the best possible parameters such that (1.1) and (1.2) can be held. Firstly, we insert <em>f</em>(<i>t</i>) = <i>λ</i><em>A</em>(<i>a</i>,<i>b</i>) + (1-<i>λ</i>)<em>C</em>(<i>a</i>,<i>b</i>) - <span style="text-decoration:overline;">C</span>(<i>a</i>,<i>b</i>) without the loss of generality. We assume that <i>a</i>><i>b</i> and let <img src="Edit_efa43881-9a60-44f8-a86f-d4a1057f4378.bmp" alt="" /> to determine the condition for <i>λ</i> and <i>μ</i> to become f (<i>t</i>) ≤ 0. Secondly, we insert g(<i>t</i>) = <i>μ</i><em>A</em>(<i>a</i>,<i>b</i>) + (1-<i>μ</i>)<em>C</em>(<i>a</i>,<i>b</i>) - <span style="text-decoration:overline;">C</span>(<i>a</i>,<i>b</i>) without the loss of generality. We assume that <i>a</i>><i>b</i> and let <img src="Edit_750dddbb-1d71-45d3-be29-6da5c88ba85d.bmp" alt="" /> to determine the condition for <i>λ</i> and <i>μ</i> to become <em>g</em>(<i>t</i>) ≥ 0.展开更多
In this paper, we establish the existence of at least five distinct solutions to a p-Laplacian problems involving critical exponents and singular cylindrical potential, by using the Nehari manifold, concentration-comp...In this paper, we establish the existence of at least five distinct solutions to a p-Laplacian problems involving critical exponents and singular cylindrical potential, by using the Nehari manifold, concentration-compactness principle and mountain pass theorem展开更多
In this paper, we consider the existence of multiple solutions to the Kirchhoff problems with critical potential, critical exponent and a concave term. Our main tools are the Nehari manifold and mountain pass theorem.
文摘In this paper, we establish the existence of at least four distinct solutions to an elliptic problem with singular cylindrical potential, a concave term, and critical Caffarelli-Kohn-Nirenberg exponent, by using the Nehari manifold and mountain pass theorem.
文摘In this paper, we establish the existence of at least four distinct solutions to an Kirchhoff type problems involving the critical Caffareli-Kohn-Niremberg exponent, concave term and sign-changing weights, by using the Nehari manifold and mountain pass theorem.
文摘In the present paper, an elliptic equation with Hardy-Sobolev critical exponent, Hardy-Sobolev-Maz’ya potential and sign-changing weights, is considered. By using the Nehari manifold and mountain pass theorem, the existence of at least four distinct solutions is obtained.
文摘This research work considers the following inequalities: <i>λ</i><em>A</em>(<i>a</i>,<i>b</i>) + (1-<i>λ</i>)<em>C</em>(<i>a</i>,<i>b</i>) ≤ <span style="text-decoration:overline;">C</span>(<i>a</i>,<i>b</i>) ≤ <i>μ</i><em>A</em>(<i>a</i>,<i>b</i>) + (1-<i>μ</i>)<em>C</em>(<i>a</i>,<i>b</i>) and <em>C</em>[<i>λ</i><em>a</em> + (1-<i>λ</i>)<em>b</em>, <i>λ</i><em>b</em> + (1-<i>λ</i>)<em>a</em>] ≤ <span style="text-decoration:overline;">C</span>(<i>a</i>,<i>b</i>) ≤ <em>C</em>[<i>μ</i><em>a</em> + (1-<i>μ</i>)<em>b</em>, <i>μ</i><em>b</em> + (1-<i>μ</i>)<em>a</em>] with <img src="Edit_ce892b1d-c056-44ea-a929-31dbcd1b0e91.bmp" alt="" /> . The researchers attempt to find an answer as to what are the best possible parameters <i>λ</i>, <i>μ</i> that (1.1) and (1.2) can be hold? The main tool is the optimization of some suitable functions that we seek to find out. By searching the best possible parameters such that (1.1) and (1.2) can be held. Firstly, we insert <em>f</em>(<i>t</i>) = <i>λ</i><em>A</em>(<i>a</i>,<i>b</i>) + (1-<i>λ</i>)<em>C</em>(<i>a</i>,<i>b</i>) - <span style="text-decoration:overline;">C</span>(<i>a</i>,<i>b</i>) without the loss of generality. We assume that <i>a</i>><i>b</i> and let <img src="Edit_efa43881-9a60-44f8-a86f-d4a1057f4378.bmp" alt="" /> to determine the condition for <i>λ</i> and <i>μ</i> to become f (<i>t</i>) ≤ 0. Secondly, we insert g(<i>t</i>) = <i>μ</i><em>A</em>(<i>a</i>,<i>b</i>) + (1-<i>μ</i>)<em>C</em>(<i>a</i>,<i>b</i>) - <span style="text-decoration:overline;">C</span>(<i>a</i>,<i>b</i>) without the loss of generality. We assume that <i>a</i>><i>b</i> and let <img src="Edit_750dddbb-1d71-45d3-be29-6da5c88ba85d.bmp" alt="" /> to determine the condition for <i>λ</i> and <i>μ</i> to become <em>g</em>(<i>t</i>) ≥ 0.
文摘In this paper, we establish the existence of at least five distinct solutions to a p-Laplacian problems involving critical exponents and singular cylindrical potential, by using the Nehari manifold, concentration-compactness principle and mountain pass theorem
文摘In this paper, we consider the existence of multiple solutions to the Kirchhoff problems with critical potential, critical exponent and a concave term. Our main tools are the Nehari manifold and mountain pass theorem.