Face recognition is a big challenge in the research field with a lot of problems like misalignment,illumination changes,pose variations,occlusion,and expressions.Providing a single solution to solve all these problems...Face recognition is a big challenge in the research field with a lot of problems like misalignment,illumination changes,pose variations,occlusion,and expressions.Providing a single solution to solve all these problems at a time is a challenging task.We have put some effort to provide a solution to solving all these issues by introducing a face recognition model based on local tetra patterns and spatial pyramid matching.The technique is based on a procedure where the input image is passed through an algorithm that extracts local features by using spatial pyramid matching andmax-pooling.Finally,the input image is recognized using a robust kernel representation method using extracted features.The qualitative and quantitative analysis of the proposed method is carried on benchmark image datasets.Experimental results showed that the proposed method performs better in terms of standard performance evaluation parameters as compared to state-of-the-art methods on AR,ORL,LFW,and FERET face recognition datasets.展开更多
基金This project was funded by the Deanship of Scientific Research(DSR)at King Abdul Aziz University,Jeddah,under Grant No.KEP-10-611-42.The authors,therefore,acknowledge with thanks DSR technical and financial support.
文摘Face recognition is a big challenge in the research field with a lot of problems like misalignment,illumination changes,pose variations,occlusion,and expressions.Providing a single solution to solve all these problems at a time is a challenging task.We have put some effort to provide a solution to solving all these issues by introducing a face recognition model based on local tetra patterns and spatial pyramid matching.The technique is based on a procedure where the input image is passed through an algorithm that extracts local features by using spatial pyramid matching andmax-pooling.Finally,the input image is recognized using a robust kernel representation method using extracted features.The qualitative and quantitative analysis of the proposed method is carried on benchmark image datasets.Experimental results showed that the proposed method performs better in terms of standard performance evaluation parameters as compared to state-of-the-art methods on AR,ORL,LFW,and FERET face recognition datasets.