期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fatigue and Corrosion Fatigue Properties of Mg-Zn-Zr-Nd Alloys in Glucose-Containing Simulated Body Fluids
1
作者 Xue Han Dan Zhang +5 位作者 Song Zhang mohammed r.i.abueida Lili Tan Xiaopeng Lu Qiang Wang Huanye Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第9期1533-1550,共18页
Medical bone implant magnesium(Mg)alloys are subjected to both corrosive environments and complex loads in the human body.The increasing number of hyperglycemic and diabetic patients in recent years has brought new ch... Medical bone implant magnesium(Mg)alloys are subjected to both corrosive environments and complex loads in the human body.The increasing number of hyperglycemic and diabetic patients in recent years has brought new challenges to the fatigue performance of Mg alloys.Therefore,it is significant to study the corrosion fatigue(CF)behavior of medical Mg alloys in glucose-containing simulated body fluids for their clinical applications.Herein,the corrosion and fatigue properties of extruded Mg-Zn-Zr-Nd alloy in Hank’s balanced salt solution(HBSS)containing different concentrations(1 g/L and 3 g/L)of glucose were investigated.The average grain size of the alloy is about 5μm,which provides excellent overall mechanical properties.The conditional fatigue strength of the alloy was 127 MPa in air and 88 MPa and 70 MPa in HBSS containing 1 g/L glucose and 3 g/L glucose,respectively.Fatigue crack initiation points for alloys in air are oxide inclusions and in solution are corrosion pits.The corrosion rate of the alloy is high at the beginning,and decreases as the surface corrosion product layer thickens with the increase of immersion time.The corrosion products of the alloy are mainly Mg(OH)_(2),MgO and a small amount of Ca-P compounds.The electrochemical results indicated that the corrosion rate of the alloys gradually decreased with increasing immersion time,but the corrosion tendency of the alloy was greater in HBSS containing 3 g/L glucose.On the one hand,glucose accelerates the corrosion process by adsorbing large amounts of aggressive Cl^(-)ions.On the other hand,glucose will be oxidized to form gluconic acid,and then reacts with Mg(OH)_(2) and MgO to form Mg gluconate,which destroys the corrosion product film and leads to the aggravation of corrosion and the accumulation of fatigue damage. 展开更多
关键词 Mg alloys Corrosion fatigue GLUCOSE Gluconic acid Corrosion product
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部