期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Identifying Extreme Rainfall Events Using Functional Outliers Detection Methods
1
作者 mohanned abduljabbar hael Yongsheng Yuan 《Journal of Data Analysis and Information Processing》 2020年第4期282-294,共13页
Outlier detection techniques play a vital role in exploring unusual data of extreme events that have a critical effect considerably in the modeling and forecasting of functional data. The functional methods have an ef... Outlier detection techniques play a vital role in exploring unusual data of extreme events that have a critical effect considerably in the modeling and forecasting of functional data. The functional methods have an effective way of identifying outliers graphically, which might not be visible through the original data plot in classical analysis. This study’s main objective is to detect the extreme rainfall events using functional outliers detection methods depending on the depth and density functions. In order to identify the unusual events of rainfall variation over long time intervals, this work conducts based on the average monthly rainfall of the Taiz region from 1998 to 2019. Data were extracted from the Tropical Rainfall Measuring Mission and the analysis has been processed by R software. The approaches applied in this study involve rainbow plots, functional highest density region box-plot as well as functional bag-plot. According to the current results, the functional density box-plot method has proven effective in detecting outlier compared to the functional depth bag-plot method. In conclusion, the results of the current study showed that the rainfall over the Taiz region during the last two decades was influenced by the extreme events of years 1999, 2004, 2005, and 2009. 展开更多
关键词 Rainfall Data Outlier Detection Rainbow Plot Functional Bag-Plot Functional Box-Plot
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部