Electronic cigarettes (e-cigarettes, EC) form an aerosol from the heating element and liquid-containing cartridge. The heating element aerosolizes the refill solutions (e-liquids) when the power source of e-cigarette ...Electronic cigarettes (e-cigarettes, EC) form an aerosol from the heating element and liquid-containing cartridge. The heating element aerosolizes the refill solutions (e-liquids) when the power source of e-cigarette is pressed. E-liquids consist of combinations of propylene glycol, glycerine, nicotine and flavouring ingredients. Puffing activates the battery-operated heating element in the atomizer and will produce smoke that is similar to conventional cigarette (CC). This study evaluated the chemical composition of e-liquid and aerosol samples available in Malaysia. We analyzed the volatile organic compounds in e-liquids and the aerosols samples from EC using gas chromatography mass spectrometer. Seventy-two EC e-liquids were analyzed through different flavours from more than 60 brands. Samples consisted of 32 nicotine-free (0 mg) and 40 nicotine-containing refill solutions (3 - 12 mg). Overall, 116 compounds were identified from EC e-liquids. On the other hand, 275 compounds were identified from their resultant aerosol samples. There were 42 compounds found in both e-liquids and aerosols. Seven compounds were only found in e-liquids and 38 compounds were only found in aerosols. Propylene glycol was found in all of the e-liquid and aerosol samples. Glycerin was found in 99% of the e-liquid and 100% of aerosol samples. At least 60% of the EC e-liquids and the resultant aerosol contain piperidine, butanoic acid ethyl ester and nicotine. It was also found that at least 9 out of 35 nicotine free labeled e-liquids contain nicotine. Some of these compounds were known to be detrimental to health and were detected in aerosol although they were not present in e-liquids. While some of the compounds are flavouring ingredients, it is necessary to evaluate its long-term effects on EC users.展开更多
Electronic cigarette (EC) is a device that imitates conventional cigarettes, which vaporizes a solution, with or without nicotine. This study evaluates the nicotine levels in EC refill solutions, its release in aeroso...Electronic cigarette (EC) is a device that imitates conventional cigarettes, which vaporizes a solution, with or without nicotine. This study evaluates the nicotine levels in EC refill solutions, its release in aerosols and comparison to the amount stated on the label. Seventy-two (72) different EC refill solutions were obtained from local shops in Selangor, Malaysia consisting of 40 nicotine-containing (3 - 12 mg) and 32 nicotine-free (0 mg) solutions. Aerosols were obtained by using an air tight syringe connected to an EC device to draw aerosol through an XAD-4 sorbent tube that trapped the nicotine. Nicotine in solution and aerosol samples are analyzed using gas chromatography-mass spectrometry equipment. Quantified nicotine in 40 nicotine-containing solutions ranged from 0.224 - 17.306 mg/mL. Nicotine is detected in 3 of the 32 nicotine-free solutions. Percentage of nicotine released into aerosols from refill solutions varied from 0.54% - 28.2%. Out of the 40 samples, thirty-two (32) had nicotine content that violated by more than ±10% from the value on the label. In comparing the labels, 19 samples have 0.3% - 77% higher nicotine level and 13 samples have 0.2% - 96.3% lower nicotine content. The inconsistency between the labelled and true levels of nicotine content indicates that commercial information may be misleading. The presence of nicotine in the nicotine-free refill solutions and higher nicotine content in aerosols may be addictive and may have negative health effects on users.展开更多
文摘Electronic cigarettes (e-cigarettes, EC) form an aerosol from the heating element and liquid-containing cartridge. The heating element aerosolizes the refill solutions (e-liquids) when the power source of e-cigarette is pressed. E-liquids consist of combinations of propylene glycol, glycerine, nicotine and flavouring ingredients. Puffing activates the battery-operated heating element in the atomizer and will produce smoke that is similar to conventional cigarette (CC). This study evaluated the chemical composition of e-liquid and aerosol samples available in Malaysia. We analyzed the volatile organic compounds in e-liquids and the aerosols samples from EC using gas chromatography mass spectrometer. Seventy-two EC e-liquids were analyzed through different flavours from more than 60 brands. Samples consisted of 32 nicotine-free (0 mg) and 40 nicotine-containing refill solutions (3 - 12 mg). Overall, 116 compounds were identified from EC e-liquids. On the other hand, 275 compounds were identified from their resultant aerosol samples. There were 42 compounds found in both e-liquids and aerosols. Seven compounds were only found in e-liquids and 38 compounds were only found in aerosols. Propylene glycol was found in all of the e-liquid and aerosol samples. Glycerin was found in 99% of the e-liquid and 100% of aerosol samples. At least 60% of the EC e-liquids and the resultant aerosol contain piperidine, butanoic acid ethyl ester and nicotine. It was also found that at least 9 out of 35 nicotine free labeled e-liquids contain nicotine. Some of these compounds were known to be detrimental to health and were detected in aerosol although they were not present in e-liquids. While some of the compounds are flavouring ingredients, it is necessary to evaluate its long-term effects on EC users.
文摘Electronic cigarette (EC) is a device that imitates conventional cigarettes, which vaporizes a solution, with or without nicotine. This study evaluates the nicotine levels in EC refill solutions, its release in aerosols and comparison to the amount stated on the label. Seventy-two (72) different EC refill solutions were obtained from local shops in Selangor, Malaysia consisting of 40 nicotine-containing (3 - 12 mg) and 32 nicotine-free (0 mg) solutions. Aerosols were obtained by using an air tight syringe connected to an EC device to draw aerosol through an XAD-4 sorbent tube that trapped the nicotine. Nicotine in solution and aerosol samples are analyzed using gas chromatography-mass spectrometry equipment. Quantified nicotine in 40 nicotine-containing solutions ranged from 0.224 - 17.306 mg/mL. Nicotine is detected in 3 of the 32 nicotine-free solutions. Percentage of nicotine released into aerosols from refill solutions varied from 0.54% - 28.2%. Out of the 40 samples, thirty-two (32) had nicotine content that violated by more than ±10% from the value on the label. In comparing the labels, 19 samples have 0.3% - 77% higher nicotine level and 13 samples have 0.2% - 96.3% lower nicotine content. The inconsistency between the labelled and true levels of nicotine content indicates that commercial information may be misleading. The presence of nicotine in the nicotine-free refill solutions and higher nicotine content in aerosols may be addictive and may have negative health effects on users.