期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Monthly Temporal-Spatial Variability and Estimation of Absorbing Aerosol Index Using Ground-Based Meteorological Data in Nigeria
1
作者 Mukhtar Balarabe Khiruddin Abdullah +1 位作者 mohd nawawi Amin Esmail Khalil 《Atmospheric and Climate Sciences》 2016年第3期425-444,共20页
The objective of this work is to analyze the temporal and spatial variability of the monthly mean aerosol index (AI) obtained from the Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI) in c... The objective of this work is to analyze the temporal and spatial variability of the monthly mean aerosol index (AI) obtained from the Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI) in comparison with the available ground observations in Nigeria during 1984-2013. It also aims at developing a regression model to allow the estimation of the values of AI in Nigeria based on the data from ground observations. TOMS and OMI data are considered and treated separately to provide continuity and consistency in the long-term data observations, together with the meteorological variable such as wind speed, visibility, air temperature and relative humidity that can be used to characterize the dust activity in Nigeria. The results revealed a strong seasonal pattern of the monthly distribution and variability of absorbing aerosols along a north to south gradient. The monthly mean AI showed higher values during the dry months (Harmattan) and lower values during the wet months (Summer) in all zones. From December to February, higher AI values are observed in the southern region, decreasing progressively towards the north, while during March-October, the opposite pattern is observed. The AI showed clear maximum values of 2.06, 1.93, and 1.87 (TOMS) and 2.32, 2.27 and 2.24 (OMI) in the month of January and minimum values in September over the north-central, southern and coastal zones, while showing maximum values of 1.76 (TOMS) and 2.10 (OMI) during March in the Sahel. New empirical algorithms for predicting missing AI data were proposed using TOMS data and multiple linear regression, and the model co-efficient was determined. The generated coefficients were applied to another dataset for cross-validation. The accuracy of the model was determined using the coefficient of determination R<sup>2</sup> and the root mean square error (RMSE) calculated at the 95% confidence level. The AI values for the missing years were retrieved, plotted and compared with the measured monthly AI cycle. It is concluded that the meteorological variables can significantly explain the AI variability and can be used efficiently to predict the missing AI data. 展开更多
关键词 Aerosol Index NIGERIA Relative Humidity Temperature VISIBILITY
下载PDF
Seasonal Variations of Aerosol Optical Properties and Identification of Different Aerosol Types Based on AERONET Data over Sub-Sahara West-Africa 被引量:2
2
作者 Mukhtar Balarabe Khiruddin Abdullah mohd nawawi 《Atmospheric and Climate Sciences》 2016年第1期13-28,共16页
The uncertainty in the quantification of aerosol properties such as concentration, size, and composition, spatially and temporally makes regional studies important. Therefore, this study presents seasonal variations o... The uncertainty in the quantification of aerosol properties such as concentration, size, and composition, spatially and temporally makes regional studies important. Therefore, this study presents seasonal variations of aerosol optical properties over Ilorin (8&#17632'N, 4&#17634'E), Nigeria. Long-term (1998-2013) records of aerosol optical depth (AOD) and angstrom exponent α, from ground-based Aerosol Robotic Network (AERONET) are used to study the seasonal variability, characteristics and types of aerosol. The study showed that seasonal variations (Harmattan and Summer) result in different aerosol concentration, characteristics, and types. The magnitude and sensitivity of AOD to wavelength are found low in Summer with significant increase during Saharan dust transport season (Harmattan). The average mean AODs are 0.73 ± 0.50, 0.97 ± 0.52 and 0.46 ± 0.29 with corresponding mean angstrom of 0.66 ± 0.36, 0.68 ± 0.34, and 0.64 ± 0.37 for the entire period, Harmattan and Summer seasons. High frequency of occurrence of angstrom exponent below 1 (78% and 81%) which were observed during Harmattan and Summer indicates that the particles are generally coarse in mode. The results revealed that for both Harmattan and Summer seasons, the dominant aerosol was dust (DA) with frequency of occurrence of 82% and 79%. However, mixed aerosol (MIXA) (14.4%) is the second dominant case during Harmattan while in Summer maritime aerosol (MA) (9.1%) associated with transport due to southwesterly trade wind is the second dominant aerosol. This conclusion is supported by size distribution data for the study site which showed that large volume of aerosol particle size are enclosed in largely coarse mode range in all seasons. A 7-day back trajectory seasonal frequency plot sourced from the Hysplit Single Particles Lagrangian Integrated Trajectory model (Hysplit_4 model) shows that dust are transported from the Sahara during north-easterly trade wind flow while the observed marine aerosols are conveyed by the southwesterly trade wind influences to the study site. 展开更多
关键词 AEROSOL Angstrom Exponent HARMATTAN Optical Depth Summer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部