Visible light communication(VLC),which is a prominent emerging solution that complements the radio frequency(RF)technology,exhibits the potential to meet the demands of fifth-generation(5G)and beyond technologies.The ...Visible light communication(VLC),which is a prominent emerging solution that complements the radio frequency(RF)technology,exhibits the potential to meet the demands of fifth-generation(5G)and beyond technologies.The random movement of mobile terminals in the indoor environment is a challenge in the VLC system.The model of optical attocells has a critical role in the uniform distribution and the quality of communication links in terms of received power and signal-to-noise ratio(SNR).As such,the optical attocells positions were optimized in this study with a developed try and error(TE)algorithm.The optimized optical attocells were examined and compared with previous models.This novel approach had successfully increased minimum received power from−1.29 to−0.225 dBm,along with enhanced SNR performance by 2.06 dB.The bit error rate(BER)was reduced to 4.42×10−8 and 6.63×10−14 by utilizing OOK-NRZ and BPSK modulation techniques,respectively.The optimized attocells positions displayed better uniform distribution,as both received power and SNR performances improved by 0.45 and 0.026,respectively.As the results of the proposed model are optimal,it is suitable for standard office and room model applications.展开更多
Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for ...Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for industrial implementations are in scarcity,areas concerning illumination optimisation and communication performances demand further investigation.As such,this paper presents a new modelling of light fixture distribution for a warehouse model to provide acceptable illumination and communication performances.The proposed model was evaluated based on various semi-angles at half power(SAAHP)and different height levels for several parameters,including received power,signal to noise ratio(SNR),and bit error rate(BER).The results revealed improvement in terms of received power and SNR with 30 Mbps data rate.Various modulations were studied to improve the link quality,whereby better average BER values of 5.55×10^(−15) and 1.06×10^(−10) had been achieved with 4 PAM and 8 PPM,respectively.The simulation outcomes are indeed viable for the practical warehouse model.展开更多
基金the grant names“ProfessionalDevelopment Research University Grant”(“UTM Vot No.05E69”and“TDR grant Vot No.05G27”).
文摘Visible light communication(VLC),which is a prominent emerging solution that complements the radio frequency(RF)technology,exhibits the potential to meet the demands of fifth-generation(5G)and beyond technologies.The random movement of mobile terminals in the indoor environment is a challenge in the VLC system.The model of optical attocells has a critical role in the uniform distribution and the quality of communication links in terms of received power and signal-to-noise ratio(SNR).As such,the optical attocells positions were optimized in this study with a developed try and error(TE)algorithm.The optimized optical attocells were examined and compared with previous models.This novel approach had successfully increased minimum received power from−1.29 to−0.225 dBm,along with enhanced SNR performance by 2.06 dB.The bit error rate(BER)was reduced to 4.42×10−8 and 6.63×10−14 by utilizing OOK-NRZ and BPSK modulation techniques,respectively.The optimized attocells positions displayed better uniform distribution,as both received power and SNR performances improved by 0.45 and 0.026,respectively.As the results of the proposed model are optimal,it is suitable for standard office and room model applications.
基金supported by Professional Development Research University Grant(UTM Vot No.06E59).
文摘Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for industrial implementations are in scarcity,areas concerning illumination optimisation and communication performances demand further investigation.As such,this paper presents a new modelling of light fixture distribution for a warehouse model to provide acceptable illumination and communication performances.The proposed model was evaluated based on various semi-angles at half power(SAAHP)and different height levels for several parameters,including received power,signal to noise ratio(SNR),and bit error rate(BER).The results revealed improvement in terms of received power and SNR with 30 Mbps data rate.Various modulations were studied to improve the link quality,whereby better average BER values of 5.55×10^(−15) and 1.06×10^(−10) had been achieved with 4 PAM and 8 PPM,respectively.The simulation outcomes are indeed viable for the practical warehouse model.