AIM: To study the effects of ferulic acid on gastrointe-stinal motility both in vitro and in vivo.METHODS: Ferulic acid induced concentration-dependent stimulation of the basal tone of isolated guinea pig ileum (2-20 ...AIM: To study the effects of ferulic acid on gastrointe-stinal motility both in vitro and in vivo.METHODS: Ferulic acid induced concentration-dependent stimulation of the basal tone of isolated guinea pig ileum (2-20 μmol/L) and isolated rat fundus (0.05-0.4 mmol/L). RESULTS: Ferulic acid significantly accelerated the gastrointestinal transit and gastric emptying in rats in a dose-dependent manner (50-200 mg/kg, po). Cisplatin (2.5-20 mg/kg, ip) induced a dose-dependent delay in gastric emptying in rats. Pretreatment with ferulic acid dose-dependently, significantly reversed the cisplatin-induced delay in gastric emptying. CONCLUSION: The endogenous prostaglandins (PGs) are involved in mediating the stimulant effects of ferulic acid. This effect of dietary ferulic acid may help improve other accompanying gastrointestinal symptoms such as abdominal discomfort and also may protect against emesis induced by cytotoxic drugs.展开更多
文摘AIM: To study the effects of ferulic acid on gastrointe-stinal motility both in vitro and in vivo.METHODS: Ferulic acid induced concentration-dependent stimulation of the basal tone of isolated guinea pig ileum (2-20 μmol/L) and isolated rat fundus (0.05-0.4 mmol/L). RESULTS: Ferulic acid significantly accelerated the gastrointestinal transit and gastric emptying in rats in a dose-dependent manner (50-200 mg/kg, po). Cisplatin (2.5-20 mg/kg, ip) induced a dose-dependent delay in gastric emptying in rats. Pretreatment with ferulic acid dose-dependently, significantly reversed the cisplatin-induced delay in gastric emptying. CONCLUSION: The endogenous prostaglandins (PGs) are involved in mediating the stimulant effects of ferulic acid. This effect of dietary ferulic acid may help improve other accompanying gastrointestinal symptoms such as abdominal discomfort and also may protect against emesis induced by cytotoxic drugs.