期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Robust Optimal Higher-order-observer-based Dynamic Sliding Mode Control for VTOL Unmanned Aerial Vehicles 被引量:2
1
作者 Yashar Mousavi Amin Zarei +1 位作者 Arash Mousavi mohsen biari 《International Journal of Automation and computing》 EI CSCD 2021年第5期802-813,共12页
This paper investigates the precise trajectory tracking of unmanned aerial vehicles(UAV) capable of vertical take-off and landing(VTOL) subjected to external disturbances. For this reason, a robust higher-order-observ... This paper investigates the precise trajectory tracking of unmanned aerial vehicles(UAV) capable of vertical take-off and landing(VTOL) subjected to external disturbances. For this reason, a robust higher-order-observer-based dynamic sliding mode controller(HOB-DSMC) is developed and optimized using the fractional-order firefly algorithm(FOFA). In the proposed scheme, the sliding surface is defined as a function of output variables, and the higher-order observer is utilized to estimate the unmeasured variables,which effectively alleviate the undesirable effects of the chattering phenomenon. A neighboring point close to the sliding surface is considered, and as the tracking error approaches this point, the second control is activated to reduce the control input. The stability analysis of the closed-loop system is studied based on Lyapunov stability theorem. For a better study of the proposed scheme, various trajectory tracking tests are provided, where accurate tracking and strong robustness can be simultaneously ensured. Comparative simulation results validate the proposed control strategy′s effectiveness and its superiorities over conventional sliding mode controller(SMC) and integral SMC approaches. 展开更多
关键词 Unmanned aerial vehicle dynamic sliding mode trajectory tracking fractional firefly algorithm vertical take-off and landing system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部