The random sequence generated by linear feedback shift register can’t meet the demand of unpredictability for secure paradigms. A combination logistic chaotic equation improves the linear property of LFSR and constru...The random sequence generated by linear feedback shift register can’t meet the demand of unpredictability for secure paradigms. A combination logistic chaotic equation improves the linear property of LFSR and constructs a novel random sequence generator with longer period and complex architecture. We present the detailed result of the statistical testing on generated bit sequences, done by very strict tests of randomness: the NIST suite tests, to detect the specific characteristic expected of truly random sequences. The results of NIST’s statistical tests show that our proposed method for generating random numbers has more efficient performance.展开更多
Pseudo-Random Number Generators (PRNGs) are required for generating secret keys in cryptographic algorithms, generating sequences of packet in Network simulations (workload generators) and other applications in variou...Pseudo-Random Number Generators (PRNGs) are required for generating secret keys in cryptographic algorithms, generating sequences of packet in Network simulations (workload generators) and other applications in various fields. In this paper we will discuss a list of some requirements for generating a reliable random sequence and then will present some PRNG methods which are based on combinational chaotic logistic map. In the final section after a brief introduction to two statistical test packets, TestU01 and NIST suite tests, the PRNG methods which are presented in the fourth section will be appraised under these test packets and the results will be reported.展开更多
文摘The random sequence generated by linear feedback shift register can’t meet the demand of unpredictability for secure paradigms. A combination logistic chaotic equation improves the linear property of LFSR and constructs a novel random sequence generator with longer period and complex architecture. We present the detailed result of the statistical testing on generated bit sequences, done by very strict tests of randomness: the NIST suite tests, to detect the specific characteristic expected of truly random sequences. The results of NIST’s statistical tests show that our proposed method for generating random numbers has more efficient performance.
文摘Pseudo-Random Number Generators (PRNGs) are required for generating secret keys in cryptographic algorithms, generating sequences of packet in Network simulations (workload generators) and other applications in various fields. In this paper we will discuss a list of some requirements for generating a reliable random sequence and then will present some PRNG methods which are based on combinational chaotic logistic map. In the final section after a brief introduction to two statistical test packets, TestU01 and NIST suite tests, the PRNG methods which are presented in the fourth section will be appraised under these test packets and the results will be reported.