Determination of physical property of the soil helps in identification and classification of soil which includes analysis of particle size distribution, Atterberg limits, water content, specific gravity, phase determi...Determination of physical property of the soil helps in identification and classification of soil which includes analysis of particle size distribution, Atterberg limits, water content, specific gravity, phase determination and direct shear test. Water plays an important role in triggering landslides and slope failures. Increase of water content reduces the stability of slope. When the moisture content exceeds plastic limits, the slope begins to deform. Three soil samples are collected from the study area and the average bulk density, moisture content and specific gravity are 1.577, 37.032 and 2.434 respectively. Atterberg limit is the most distinctive properties of fine grained sediments and may be used to distinguish silts from clays. Plastic limits (WP), liquid limit (WL), shrinkage limit (WS) values of Nungbi Khunou are 26.236%, 48% and 9.4% respectively. Plasticity index (IP), consistency index (IC) and liquidity index (IL) value is 21.764%, 0.379%, and 60.623% respectively. From index properties value, the soil is highly plastic, stiff and semi-solid in nature. The soil sample falls under CI group in plasticity chart which indicates organic silt and clay soil with medium compressibility and plasticity. Phase determination and particle size distribution result in very high porosity and highly saturated soils which are well graded in nature. Slope and aspect map are prepared from DEM using ArcGIS. Slope is an important contributory factor to landslide, and slope reported from the sampling area indicates gentle slope. Aspect refers to the direction of the terrain faces which is influenced by component like vegetation, settlement, agriculture, precipitation, wind etc. Factor of safety (Fs) calculated from shear stress data is less than 1 indicating unstable slope. From the above finding, the study area may result in sudden and unpredictable failure due to volumetric changes in soil.展开更多
文摘Determination of physical property of the soil helps in identification and classification of soil which includes analysis of particle size distribution, Atterberg limits, water content, specific gravity, phase determination and direct shear test. Water plays an important role in triggering landslides and slope failures. Increase of water content reduces the stability of slope. When the moisture content exceeds plastic limits, the slope begins to deform. Three soil samples are collected from the study area and the average bulk density, moisture content and specific gravity are 1.577, 37.032 and 2.434 respectively. Atterberg limit is the most distinctive properties of fine grained sediments and may be used to distinguish silts from clays. Plastic limits (WP), liquid limit (WL), shrinkage limit (WS) values of Nungbi Khunou are 26.236%, 48% and 9.4% respectively. Plasticity index (IP), consistency index (IC) and liquidity index (IL) value is 21.764%, 0.379%, and 60.623% respectively. From index properties value, the soil is highly plastic, stiff and semi-solid in nature. The soil sample falls under CI group in plasticity chart which indicates organic silt and clay soil with medium compressibility and plasticity. Phase determination and particle size distribution result in very high porosity and highly saturated soils which are well graded in nature. Slope and aspect map are prepared from DEM using ArcGIS. Slope is an important contributory factor to landslide, and slope reported from the sampling area indicates gentle slope. Aspect refers to the direction of the terrain faces which is influenced by component like vegetation, settlement, agriculture, precipitation, wind etc. Factor of safety (Fs) calculated from shear stress data is less than 1 indicating unstable slope. From the above finding, the study area may result in sudden and unpredictable failure due to volumetric changes in soil.