Aims osmolytes,used for maintaining osmotic balance and as‘osmoprotectants’,are synthesized in plants as a general,con-served response to abiotic stress,although their contribution to stress-tolerance mechanisms rem...Aims osmolytes,used for maintaining osmotic balance and as‘osmoprotectants’,are synthesized in plants as a general,con-served response to abiotic stress,although their contribution to stress-tolerance mechanisms remains unclear.Proline,the most common osmolyte,accumulates in many plant species in parallel with increased external salinity and is considered a reliable bio-chemical marker of salt stress.We have measured proline levels in two halophytic,closely related Juncus species under laboratory and field conditions to assess the possible relevance of proline biosynthesis for salt tolerance and therefore for the ecology of these two taxa.Methods Proline was quantified in plants treated with increasing NaCl con-centrations and in plants sampled in two salt marshes located in the provinces of Valencia and alicante,respectively,in southeast spain.Electrical conductivity,pH,Na+and Cl−concentrations were measured in soil samples collected in parallel with the plant material.Important Findings Treatment with NaCl inhibited growth of J.acutus plants in a concentration-dependent manner,but only under high salt conditions for J.maritimus.salt treatments led to proline accumulation in both species,especially in the more salt-tolerant J.maritimus.The results,obtained under laboratory conditions,were confirmed in plants sam-pled in the field.in all the samplings,proline contents were signifi-cantly lower in J.acutus than in the more tolerant J.maritimus growing in the same area.No direct correlation between soil salinity and proline levels could be established,but seasonal variations were detected,with increased proline contents under accentuated water deficit conditions.our results suggest that proline biosynthesis is not only an induced,general response to salt stress but also an important contributing factor in the physiological mechanisms of salt tolerance in Juncus,and that it therefore correlates with the ecology of both species.展开更多
Aims The survival and ecological distribution of plants in arid habitats are mainly conditioned by water availability and physiological adaptations to withstand drought.In the present study,we have compared the physio...Aims The survival and ecological distribution of plants in arid habitats are mainly conditioned by water availability and physiological adaptations to withstand drought.In the present study,we have compared the physiological responses to drought of two Retama raetam(retama)subspecies from Tunisia,one of them living under the desert climate(subsp.raetam)and the other one growing on the coast(subsp.bovei).Methods To physiologically characterize the two R.raetam subspecies,and to elucidate their main mechanisms underlying their tolerance to drought stress,parameters related to seed germination,growth,photosynthesis(net photosynthetic rate,intracellular CO_(2) concentration,transpiration rate,stomatal conductance and water-use efficiency)and accumulation of osmolytes(proline,glycine betaine[GB]and soluble sugars)were determined in 4-month-old plants subjected to stress for up to 1 month.Important Findings Drought significantly inhibited germination,growth and all the evaluated photosynthetic parameters.Plants of R.raetam subsp.bovei were severely affected by drought after 3 weeks of treatment when photosynthesis rates were up to 7-fold lower than in the controls.At the same time,proline and GB significantly accumulated compared with the irrigated controls,but much less than in R.raetam subsp.raetam;in the latter subspecies,proline and GB increased to levels 24-and 6-fold higher,respectively,than in the corresponding controls.In summary,the population living in the desert region exhibited stronger tolerance to drought stress than that adapted to the semiarid littoral climate,suggesting that tolerance in R.raetam is dependent on accumulation of osmolytes.展开更多
基金Spanish Ministry of Science and Innovation and European Regional Development Fund to O.V.(CGL2008-00438/BOS)Polytechnic University of Valencia to M.B.(PAID-06-09).
文摘Aims osmolytes,used for maintaining osmotic balance and as‘osmoprotectants’,are synthesized in plants as a general,con-served response to abiotic stress,although their contribution to stress-tolerance mechanisms remains unclear.Proline,the most common osmolyte,accumulates in many plant species in parallel with increased external salinity and is considered a reliable bio-chemical marker of salt stress.We have measured proline levels in two halophytic,closely related Juncus species under laboratory and field conditions to assess the possible relevance of proline biosynthesis for salt tolerance and therefore for the ecology of these two taxa.Methods Proline was quantified in plants treated with increasing NaCl con-centrations and in plants sampled in two salt marshes located in the provinces of Valencia and alicante,respectively,in southeast spain.Electrical conductivity,pH,Na+and Cl−concentrations were measured in soil samples collected in parallel with the plant material.Important Findings Treatment with NaCl inhibited growth of J.acutus plants in a concentration-dependent manner,but only under high salt conditions for J.maritimus.salt treatments led to proline accumulation in both species,especially in the more salt-tolerant J.maritimus.The results,obtained under laboratory conditions,were confirmed in plants sam-pled in the field.in all the samplings,proline contents were signifi-cantly lower in J.acutus than in the more tolerant J.maritimus growing in the same area.No direct correlation between soil salinity and proline levels could be established,but seasonal variations were detected,with increased proline contents under accentuated water deficit conditions.our results suggest that proline biosynthesis is not only an induced,general response to salt stress but also an important contributing factor in the physiological mechanisms of salt tolerance in Juncus,and that it therefore correlates with the ecology of both species.
基金Dhikra Zayoud's stay in Valencia was supported by a grant from the Tunisian Ministry of Higher Education and Scientific Research.
文摘Aims The survival and ecological distribution of plants in arid habitats are mainly conditioned by water availability and physiological adaptations to withstand drought.In the present study,we have compared the physiological responses to drought of two Retama raetam(retama)subspecies from Tunisia,one of them living under the desert climate(subsp.raetam)and the other one growing on the coast(subsp.bovei).Methods To physiologically characterize the two R.raetam subspecies,and to elucidate their main mechanisms underlying their tolerance to drought stress,parameters related to seed germination,growth,photosynthesis(net photosynthetic rate,intracellular CO_(2) concentration,transpiration rate,stomatal conductance and water-use efficiency)and accumulation of osmolytes(proline,glycine betaine[GB]and soluble sugars)were determined in 4-month-old plants subjected to stress for up to 1 month.Important Findings Drought significantly inhibited germination,growth and all the evaluated photosynthetic parameters.Plants of R.raetam subsp.bovei were severely affected by drought after 3 weeks of treatment when photosynthesis rates were up to 7-fold lower than in the controls.At the same time,proline and GB significantly accumulated compared with the irrigated controls,but much less than in R.raetam subsp.raetam;in the latter subspecies,proline and GB increased to levels 24-and 6-fold higher,respectively,than in the corresponding controls.In summary,the population living in the desert region exhibited stronger tolerance to drought stress than that adapted to the semiarid littoral climate,suggesting that tolerance in R.raetam is dependent on accumulation of osmolytes.