Two dimensional nanomaterials, specifically graphene, can play a significant role in various photonic and electronic devices. This is especially true in handling the enormous heat in high density electronics and in no...Two dimensional nanomaterials, specifically graphene, can play a significant role in various photonic and electronic devices. This is especially true in handling the enormous heat in high density electronics and in nonlinear optics when using high power lasers. To model these systems it is important to know the thermal-optical properties of graphene. In this paper, we report on the thermal and optical linear and nonlinear properties of graphene materials using Z-scan system. In particular, we explore the thermo-optical properties of graphene, with and without gold nanorods (AuNRs). The obtained results illustrate that the addition of gold nanorods causes a significant change in thermal nonlinear refractive index coefficients of graphene, due to the plasmonic enhancements.展开更多
文摘Two dimensional nanomaterials, specifically graphene, can play a significant role in various photonic and electronic devices. This is especially true in handling the enormous heat in high density electronics and in nonlinear optics when using high power lasers. To model these systems it is important to know the thermal-optical properties of graphene. In this paper, we report on the thermal and optical linear and nonlinear properties of graphene materials using Z-scan system. In particular, we explore the thermo-optical properties of graphene, with and without gold nanorods (AuNRs). The obtained results illustrate that the addition of gold nanorods causes a significant change in thermal nonlinear refractive index coefficients of graphene, due to the plasmonic enhancements.