A set ?is a dominating set of G if every vertex of ?is adjacent to at least one vertex of S. The cardinality of the smallest dominating set of G is called the domination number of G. The square G2 of a graph G is obta...A set ?is a dominating set of G if every vertex of ?is adjacent to at least one vertex of S. The cardinality of the smallest dominating set of G is called the domination number of G. The square G2 of a graph G is obtained from G by adding new edges between every two vertices having distance 2 in G. In this paper we study the domination number of square of graphs, find a bound for domination number of square of Cartesian product of cycles, and find the exact value for some of them.展开更多
文摘A set ?is a dominating set of G if every vertex of ?is adjacent to at least one vertex of S. The cardinality of the smallest dominating set of G is called the domination number of G. The square G2 of a graph G is obtained from G by adding new edges between every two vertices having distance 2 in G. In this paper we study the domination number of square of graphs, find a bound for domination number of square of Cartesian product of cycles, and find the exact value for some of them.