期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Deep Learning and Holt-Trend Algorithms for Predicting Covid-19 Pandemic 被引量:3
1
作者 Theyazn H.H.Aldhyani Melfi Alrasheed +3 位作者 mosleh hmoud al-adaileh Ahmed Abdullah Alqarni Mohammed Y.Alzahrani Ahmed H.Alahmadi 《Computers, Materials & Continua》 SCIE EI 2021年第5期2141-2160,共20页
The Covid-19 epidemic poses a serious public health threat to the world,where people with little or no pre-existing human immunity can be more vulnerable to its effects.Thus,developing surveillance systems for predict... The Covid-19 epidemic poses a serious public health threat to the world,where people with little or no pre-existing human immunity can be more vulnerable to its effects.Thus,developing surveillance systems for predicting the Covid-19 pandemic at an early stage could save millions of lives.In this study,a deep learning algorithm and a Holt-trend model are proposed to predict the coronavirus.The Long-Short Term Memory(LSTM)and Holttrend algorithms were applied to predict confirmed numbers and death cases.The real time data used has been collected from theWorld Health Organization(WHO).In the proposed research,we have considered three countries to test the proposed model,namely Saudi Arabia,Spain and Italy.The results suggest that the LSTM models show better performance in predicting the cases of coronavirus patients.Standard measure performance Mean squared Error(MSE),Root Mean Squared Error(RMSE),Mean error and correlation are employed to estimate the results of the proposed models.The empirical results of the LSTM,using the correlation metrics,are 99.94%,99.94%and 99.91%in predicting the number of confirmed cases in the three countries.As far as the results of the LSTM model in predicting the number of death of Covid-19,they are 99.86%,98.876%and 99.16%with respect to Saudi Arabia,Italy and Spain respectively.Similarly,the experiment’s results of the Holt-Trend model in predicting the number of confirmed cases of Covid-19,using the correlation metrics,are 99.06%,99.96%and 99.94%,whereas the results of the Holt-Trend model in predicting the number of death cases are 99.80%,99.96%and 99.94%with respect to the Saudi Arabia,Italy and Spain respectively.The empirical results indicate the efficient performance of the presented model in predicting the number of confirmed and death cases of Covid-19 in these countries.Such findings provide better insights regarding the future of Covid-19 this pandemic in general.The results were obtained by applying time series models,which need to be considered for the sake of saving the lives of many people. 展开更多
关键词 Deep learning algorithm holt-trend prediction Covid-19 machine learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部