Dust phenomenon is one of the biggest environmental problems in arid and semiarid regions. In these areas, lakes and wetlands are natural dust traps and core sampling method can be an appropriate way to assess the phe...Dust phenomenon is one of the biggest environmental problems in arid and semiarid regions. In these areas, lakes and wetlands are natural dust traps and core sampling method can be an appropriate way to assess the phenomenon of the dust. Therefore, the purpose of this study is the study of frequency and characteristics of dust sediments in core samples from Hashilan wetlands, Kermanshah. Four intact core samples were taken from different parts of the Hashilan wetland in Kermanshah. Physical, chemical and micromorphological analysis were done. Also clay mineralogy was performed using X-ray analysis (XRD) and shape of particles was photographed by scanning electron microscope (SEM). Considering that four samples had been taken from different parts of the wetland, the quantitative differences in dust amount are likely due to the location of the samples. The results of XRD and thin sections show that the dominant mineralogical composition of dust particles was clay minerals, quartz and calcite. SEM results for core sample 1 revealed that most particles had the size between 2 to 50 mm which ranged from fine silt to coarse silt. Considering the similarities between SEM images for core sample 1 and those from Kermanshah dust measurement station, it could be said that fine rounded particles detected at top 30 cm of core samples had Aeolian origin. These findings were in accordance with the results from dust measurement and weather station of Kermanshah about increased dust activities in the study area over past 10 years.展开更多
Soil complexity and its multivariable nature restrict the precision of soil maps that are essential tools for soil sustainable management. Most methods developed for reducing impurities of soil map units focus on soil...Soil complexity and its multivariable nature restrict the precision of soil maps that are essential tools for soil sustainable management. Most methods developed for reducing impurities of soil map units focus on soil external properties. Taking into account the soil internal properties like geochemical weathering indices could increase the map unit's purity. However, the compatibility of these indices with Soil Taxonomic Classes has not been studied yet. This study has been performed in a hilly region with different soil types, vegetation and diverse topographic attributes to illustrate the spatial variability of soil weathering indices and their compatibility with Soil Taxonomic Classes. The grid sampling is at 100 m interval. Physico-chemical and total elemental analyses were performed on 184 and 56 soil samples respectively. Eight topographic attributes and 14 common soil development indices were determined. Principal components analysis(PCA) was done to identify the most important components. The results indicated that Morphological Index(MI) was the best index to show the degree ofsoil development in the studied region. Spatial distribution of Soil Taxonomic Classes showed relatively good compatibility with the first principal component(PC1), Vogt(V) and morphological indices. This study showed that using soil development indices with the conventional methods could be helpful tools in soil survey investigations.展开更多
文摘Dust phenomenon is one of the biggest environmental problems in arid and semiarid regions. In these areas, lakes and wetlands are natural dust traps and core sampling method can be an appropriate way to assess the phenomenon of the dust. Therefore, the purpose of this study is the study of frequency and characteristics of dust sediments in core samples from Hashilan wetlands, Kermanshah. Four intact core samples were taken from different parts of the Hashilan wetland in Kermanshah. Physical, chemical and micromorphological analysis were done. Also clay mineralogy was performed using X-ray analysis (XRD) and shape of particles was photographed by scanning electron microscope (SEM). Considering that four samples had been taken from different parts of the wetland, the quantitative differences in dust amount are likely due to the location of the samples. The results of XRD and thin sections show that the dominant mineralogical composition of dust particles was clay minerals, quartz and calcite. SEM results for core sample 1 revealed that most particles had the size between 2 to 50 mm which ranged from fine silt to coarse silt. Considering the similarities between SEM images for core sample 1 and those from Kermanshah dust measurement station, it could be said that fine rounded particles detected at top 30 cm of core samples had Aeolian origin. These findings were in accordance with the results from dust measurement and weather station of Kermanshah about increased dust activities in the study area over past 10 years.
基金Center of Excellence"Improvement Soil Quality in order to Optimize the Plant Nutrition"of Soil Science department, University of Tehran and College of Agriculture and Natural Resources, University of Tehran for financial support of the study (Grant No. 7104017/6/19)
文摘Soil complexity and its multivariable nature restrict the precision of soil maps that are essential tools for soil sustainable management. Most methods developed for reducing impurities of soil map units focus on soil external properties. Taking into account the soil internal properties like geochemical weathering indices could increase the map unit's purity. However, the compatibility of these indices with Soil Taxonomic Classes has not been studied yet. This study has been performed in a hilly region with different soil types, vegetation and diverse topographic attributes to illustrate the spatial variability of soil weathering indices and their compatibility with Soil Taxonomic Classes. The grid sampling is at 100 m interval. Physico-chemical and total elemental analyses were performed on 184 and 56 soil samples respectively. Eight topographic attributes and 14 common soil development indices were determined. Principal components analysis(PCA) was done to identify the most important components. The results indicated that Morphological Index(MI) was the best index to show the degree ofsoil development in the studied region. Spatial distribution of Soil Taxonomic Classes showed relatively good compatibility with the first principal component(PC1), Vogt(V) and morphological indices. This study showed that using soil development indices with the conventional methods could be helpful tools in soil survey investigations.