期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Photocatalytic degradation of perfluorooctanoic acid with β-Ga_2O_3 in anoxic aqueous solution 被引量:8
1
作者 Baoxiu Zhao mou lv Li Zhou 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第4期774-780,共7页
Perfluorooctanoic acid (PFOA) is a new-found hazardous persistent organic pollutant, and it is resistant to decomposition by hydroxyl radical (HO.) due to its stable chemical structure and the high electronegativi... Perfluorooctanoic acid (PFOA) is a new-found hazardous persistent organic pollutant, and it is resistant to decomposition by hydroxyl radical (HO.) due to its stable chemical structure and the high electronegativity of fluorine. Photocatalytic reduction of PFOA with β-Ga2O3 in anoxic aqueous solution was investigated for the first time, and the results showed that the photoinduced electron (ecb) coming from the β-Ga2O3 conduction band was the major degradation substance for PFOA, and shorter-chain perfluorinated carboxylic acids (PFCAs, CnF2n+1COOH, 1 ≤ n ≤ 6) were the dominant products. Furthermore, the concentration of F- was measured by the IC technique and defluorination efficiency was calculated. After 3 hr, the photocatalytic degradation efficiency was 98.8% and defluorination efficiency was 31.6% in the presence of thiosulfate and bubbling N2. The degradation reaction followed first-order kinetics (k = 0.0239 min-1, t1/2 = 0.48 hr). PFCAs (CnF2n+xCOOH, 1 ≤ n≤ 7) were detected and measured by LC-MS and LC-MS/MS methods. It was deduced that the probable photocatalytic degradation mechanism involves ec-b attacking the carboxyl of CnF2n+1COOH, resulting in decarboxylation and the generation of CnFzn+1. The produced CnF2n+1 reacted with H2O, forming CnF2n+1OH, then CnF2n+1OH underwent HF loss and hydrolysis to form CnF2,+1COOH. 展开更多
关键词 perfluorooctanoic acid β-Ga2O3 photocatalytic degradation DEFLUORINATION photoinduced electron
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部