The socio-economic activities of Niger rely on agriculture which is strongly affected by changes in precipitation during the rainy season.The ultimate aim of this study is to assess the projected changes of precipitat...The socio-economic activities of Niger rely on agriculture which is strongly affected by changes in precipitation during the rainy season.The ultimate aim of this study is to assess the projected changes of precipitation over Niger under the Representative Concentration Pathways(RCP)scenarios 4.5(RCP 4.5)and RCP 8.5 using multi-RCM(Multi-Regional Climate)model approach.The observation data are from CHIRPS(Climate Hazards Group InfraRed Precipitation with Station)and the RCMs are from the SMHI(Swedish Meteorological and Hydrological Institute)model(RCA4)driven by ten(10)different GCMs(General Circulation Model)(e.g.,CCCma,CSIRO,ICHEC,IPSL,MIROC,MOHC-HadGEM2,MPI,NCC-NorESM1,NOOA,and NRCM)within the framework of CORDEX(Coordinated Regional Climate Downscaling Experiment)Africa experiment.The reference and projections periods in this study are respectively 1981-2005 for the present and 2011-2100 for the near,medium and far future divided into three periods,2011 to 2040(P1),2041 to 2070(P2)and 2071 to 2100(P3).The methodology used,consists of assessing the performance of the multi-RCMs of RCA4 model(with respect of CHIRPS)in simulating the precipitations changes by computing the spatial distribution and anomalies of precipitations;and their indices of RMSE(Root Mean Square Error),the bias,SPI(Standardized Precipitation Anomaly Index),correlation coefficient,statistical t-test,spatial evolution rate and the rate of temporal change.After the validation of the multi-RCMs RCA4 models,the ensemble mean of the models is used to assess the projected changes of precipitations over Niger in the future.The results show that most of the multi-RCMs capture the four climatic zone except for IPSL.While the ensemble mean of the models simulates(as compared to CHIRPS)more accurately the monthly,annual precipitations anomalies and their indices than individual’s models in the reference period,some RCMs(e.g.,CSIRO-IPSL and CCCma-HadGEM)poorly reproduce them.The projected changes of precipitations indicate for the scenario RCP 4.5 respectively a moderately surplus of precipitation years in the period P1 and moderately deficit years in the period P2 while the period P3 shows a small upward precipitation trend.In contrary,for the scenario RCP 8.5,all the three periods(P1,P2 and P3)indicate an intensification of precipitation leading to a longer wet period which may lead to extreme precipitations and flooding.Moreover,both scenarios have projected an increase of total monthly precipitation in May and September and a decrease in July and August respectively which will likely lead to an early onset and late cessation of the rainy season;and a shift of the peak of the rainy season.Therefore,this study shows the need of a monitoring system for the projected changes of precipitation in the near future to anticipate urgent action in wet/dry periods to adapt to a changing climate.展开更多
Our paper assessed the improvement performance of the reanalysis(ERA5)compared to ERAI(ERA-Interim)both from the ECMWF(European Center for Medium-Range Weather Forecast)in representing the WAM(West African Monsoon)dyn...Our paper assessed the improvement performance of the reanalysis(ERA5)compared to ERAI(ERA-Interim)both from the ECMWF(European Center for Medium-Range Weather Forecast)in representing the WAM(West African Monsoon)dynamic.Our aim is to evaluate the reliability of ERA5 to deliver better climate services than ERAI in the West African Sahel region.Two complementary observational databases namely the CRU(Climate Research Unit)and the GPCC(Global Precipitation Climatology Center)data are used to evaluate precipitation and temperature representation by the two reanalysis.Otherwise,the representation of some major features of the WAM system,such as the SHL(Saharan Heat Low),the AEJ/TEJ(African and Tropical Easterly Jets)was assessed using the two reanalysis data.The obtained results show a better representation of the seasonal accumulated precipitation and average temperature by ERA5 compared to ERAI with higher spatial correlation and lower bias relative to the observations.Furthermore,ERAI appears to be rainier than ERA5 but ERA5 produces more heavy rainfall days.During the period of intense monsoon,the frequency of the SHL is higher for ERAI which would favor intensification of monsoon inflow and depth.The lower SHL frequency observed in the ERA5 could explain the observed weakening intensity of AEJ which is favorable for moist conditions over the Sahel.These findings confirm the progress made by ERA5 compared to ERAI in representing the WAM dynamic and demonstrate its reliability for delivering better climate services over the West African Sahel.展开更多
基金We thank the late Professor Fode MADE for his contribution in this work,may his soul stay in peace in paradise.
文摘The socio-economic activities of Niger rely on agriculture which is strongly affected by changes in precipitation during the rainy season.The ultimate aim of this study is to assess the projected changes of precipitation over Niger under the Representative Concentration Pathways(RCP)scenarios 4.5(RCP 4.5)and RCP 8.5 using multi-RCM(Multi-Regional Climate)model approach.The observation data are from CHIRPS(Climate Hazards Group InfraRed Precipitation with Station)and the RCMs are from the SMHI(Swedish Meteorological and Hydrological Institute)model(RCA4)driven by ten(10)different GCMs(General Circulation Model)(e.g.,CCCma,CSIRO,ICHEC,IPSL,MIROC,MOHC-HadGEM2,MPI,NCC-NorESM1,NOOA,and NRCM)within the framework of CORDEX(Coordinated Regional Climate Downscaling Experiment)Africa experiment.The reference and projections periods in this study are respectively 1981-2005 for the present and 2011-2100 for the near,medium and far future divided into three periods,2011 to 2040(P1),2041 to 2070(P2)and 2071 to 2100(P3).The methodology used,consists of assessing the performance of the multi-RCMs of RCA4 model(with respect of CHIRPS)in simulating the precipitations changes by computing the spatial distribution and anomalies of precipitations;and their indices of RMSE(Root Mean Square Error),the bias,SPI(Standardized Precipitation Anomaly Index),correlation coefficient,statistical t-test,spatial evolution rate and the rate of temporal change.After the validation of the multi-RCMs RCA4 models,the ensemble mean of the models is used to assess the projected changes of precipitations over Niger in the future.The results show that most of the multi-RCMs capture the four climatic zone except for IPSL.While the ensemble mean of the models simulates(as compared to CHIRPS)more accurately the monthly,annual precipitations anomalies and their indices than individual’s models in the reference period,some RCMs(e.g.,CSIRO-IPSL and CCCma-HadGEM)poorly reproduce them.The projected changes of precipitations indicate for the scenario RCP 4.5 respectively a moderately surplus of precipitation years in the period P1 and moderately deficit years in the period P2 while the period P3 shows a small upward precipitation trend.In contrary,for the scenario RCP 8.5,all the three periods(P1,P2 and P3)indicate an intensification of precipitation leading to a longer wet period which may lead to extreme precipitations and flooding.Moreover,both scenarios have projected an increase of total monthly precipitation in May and September and a decrease in July and August respectively which will likely lead to an early onset and late cessation of the rainy season;and a shift of the peak of the rainy season.Therefore,this study shows the need of a monitoring system for the projected changes of precipitation in the near future to anticipate urgent action in wet/dry periods to adapt to a changing climate.
基金funded by the National Ministry of High Education,Research and Technological Innovation of the Republic of Niger through the Scientific Research and Technological Innovation Support Funds(FARSIT).
文摘Our paper assessed the improvement performance of the reanalysis(ERA5)compared to ERAI(ERA-Interim)both from the ECMWF(European Center for Medium-Range Weather Forecast)in representing the WAM(West African Monsoon)dynamic.Our aim is to evaluate the reliability of ERA5 to deliver better climate services than ERAI in the West African Sahel region.Two complementary observational databases namely the CRU(Climate Research Unit)and the GPCC(Global Precipitation Climatology Center)data are used to evaluate precipitation and temperature representation by the two reanalysis.Otherwise,the representation of some major features of the WAM system,such as the SHL(Saharan Heat Low),the AEJ/TEJ(African and Tropical Easterly Jets)was assessed using the two reanalysis data.The obtained results show a better representation of the seasonal accumulated precipitation and average temperature by ERA5 compared to ERAI with higher spatial correlation and lower bias relative to the observations.Furthermore,ERAI appears to be rainier than ERA5 but ERA5 produces more heavy rainfall days.During the period of intense monsoon,the frequency of the SHL is higher for ERAI which would favor intensification of monsoon inflow and depth.The lower SHL frequency observed in the ERA5 could explain the observed weakening intensity of AEJ which is favorable for moist conditions over the Sahel.These findings confirm the progress made by ERA5 compared to ERAI in representing the WAM dynamic and demonstrate its reliability for delivering better climate services over the West African Sahel.