The efficiency of photocatalytic overall water splitting was mainly limited by the slow reaction kinetics of water oxidation.How to design effective surface active site to overcome the slow water oxidation reaction wa...The efficiency of photocatalytic overall water splitting was mainly limited by the slow reaction kinetics of water oxidation.How to design effective surface active site to overcome the slow water oxidation reaction was a major challenge.Here,we propose a strategy to accelerate surface water oxidation through the fabrication spatially separated double active sites.FeCoPi/Bi_(4)NbO_(8)Cl-OVs photocatalyst with spatially separated double active site was prepared by hydrogen reduction photoanode deposition method.Due to the high matching of the spatial loading positions of FeCoPi and OVs with the photogenerated charge distribution of Bi_(4)NbO_(8)Cl and corresponding reaction mechanisms of substrate,the FeCoPi and OVs on the(001)and(010)crystal planes of Bi_(4)NbO_(8)Cl photocatalyst provided surface active site for water oxidation reaction and electron shuttle reaction(Fe^(3+)/Fe^(2+)),respectively.Under visible light irradiation,the evolution O_(2)rate of FeCoPi/Bi_(4)NbO_(8)Cl OVs was 16.8μmol h^(-1),as 32.9 times as Bi_(4)NbO_(8)Cl.Furthermore,a hydrogen evolution co-catalyst PtRu@Cr_(2)O_(3)was prepared by sequential photodeposition method.Due to the introduction of Ru,the Schottky barrier between PbTiO_(3)and Pt was effectively reduced,which promoted the transfer of photogenerated electrons to PtRu@Cr_(2)O_(3)thermodynamically,the evolution H_(2)rate on PtRu@Cr_(2)O_(3)/PbTiO_(3)increased to 664.8 times.On based of the synchronous enhancement of the water oxidation performance on FeCoPi/Bi_(4)NbO_(8)Cl-OVs and water reduction performance on PtRu@Cr_(2)O_(3)/PbTiO_(3),a novel Z-Scheme photocatalytic overall water splitting system(FeCoPi/Bi_(4)NbO_(8)Cl-OVs)mediated by Fe^(3+)/Fe^(2+)had successfully constructed.Under visible light irradiation,the evolution rates of H_(2)and O_(2)were 2.5 and 1.3μmol h^(-1),respectively.This work can provide some reference for the design of active site and the controllable synthesis of OVs spatial position.On the other hand,the hydrogen evolution co catalyst(PtRu@Cr_(2)O_(3))and the co catalyst FeCoPi for oxygen evolution contributed to the construction of an overall water splitting system.展开更多
基金supported by National Natural Science Foundation of China(22369022)Technology Innovation Leading Program of Shaanxi(2022QFY07-03)。
文摘The efficiency of photocatalytic overall water splitting was mainly limited by the slow reaction kinetics of water oxidation.How to design effective surface active site to overcome the slow water oxidation reaction was a major challenge.Here,we propose a strategy to accelerate surface water oxidation through the fabrication spatially separated double active sites.FeCoPi/Bi_(4)NbO_(8)Cl-OVs photocatalyst with spatially separated double active site was prepared by hydrogen reduction photoanode deposition method.Due to the high matching of the spatial loading positions of FeCoPi and OVs with the photogenerated charge distribution of Bi_(4)NbO_(8)Cl and corresponding reaction mechanisms of substrate,the FeCoPi and OVs on the(001)and(010)crystal planes of Bi_(4)NbO_(8)Cl photocatalyst provided surface active site for water oxidation reaction and electron shuttle reaction(Fe^(3+)/Fe^(2+)),respectively.Under visible light irradiation,the evolution O_(2)rate of FeCoPi/Bi_(4)NbO_(8)Cl OVs was 16.8μmol h^(-1),as 32.9 times as Bi_(4)NbO_(8)Cl.Furthermore,a hydrogen evolution co-catalyst PtRu@Cr_(2)O_(3)was prepared by sequential photodeposition method.Due to the introduction of Ru,the Schottky barrier between PbTiO_(3)and Pt was effectively reduced,which promoted the transfer of photogenerated electrons to PtRu@Cr_(2)O_(3)thermodynamically,the evolution H_(2)rate on PtRu@Cr_(2)O_(3)/PbTiO_(3)increased to 664.8 times.On based of the synchronous enhancement of the water oxidation performance on FeCoPi/Bi_(4)NbO_(8)Cl-OVs and water reduction performance on PtRu@Cr_(2)O_(3)/PbTiO_(3),a novel Z-Scheme photocatalytic overall water splitting system(FeCoPi/Bi_(4)NbO_(8)Cl-OVs)mediated by Fe^(3+)/Fe^(2+)had successfully constructed.Under visible light irradiation,the evolution rates of H_(2)and O_(2)were 2.5 and 1.3μmol h^(-1),respectively.This work can provide some reference for the design of active site and the controllable synthesis of OVs spatial position.On the other hand,the hydrogen evolution co catalyst(PtRu@Cr_(2)O_(3))and the co catalyst FeCoPi for oxygen evolution contributed to the construction of an overall water splitting system.