Chang'E-1 is the first lunar mission in China,which was successfully launched on Oct.24th,2007.It was guided to crash on the Moon on March 1,2009,at 52.36°E,1.50°S,in the north of Mare Fecunditatis.The t...Chang'E-1 is the first lunar mission in China,which was successfully launched on Oct.24th,2007.It was guided to crash on the Moon on March 1,2009,at 52.36°E,1.50°S,in the north of Mare Fecunditatis.The total mission lasted 495 days,exceeding the designed life-span about four months.1.37Terabytes raw data was received from Chang'E-1.It was then processed into 4Terabytes science data at different levels.A series of science results have been achieved by analyzing and applicating these data,especially "global image of the Moon of China's first lunar exploration mission".Four scientific goals of Chang'E-1 have been achieved.It provides abundant materials for the research of lunar sciences and cosmochemistry.Meanwhile these results will serve for China's future lunar missions.展开更多
Gamma-ray spectrometer (GRS) is one of the main payloads on the Chang'E-1 (CE-1) lunar probe, mainly aimed to detect the elemental abundances and distributions on the lunar surface. At 03:58 on 28 November 2007,...Gamma-ray spectrometer (GRS) is one of the main payloads on the Chang'E-1 (CE-1) lunar probe, mainly aimed to detect the elemental abundances and distributions on the lunar surface. At 03:58 on 28 November 2007, it performed the first observation of the lunar gamma rays. As of 24 October 2008, 2105 h of effective gamma rays spectra had been acquired by CE-1 GRS, which covers the whole surface of the moon. This paper mainly describes the data processing procedures and methods of deriving the elemental abundances by using the CE-1 GRS time series corrected spectra: first, to bin data into pixels for mapping; then, to perform a background deduction of the cumulative spectra and obtain a peak area of the elements; and finally, to use the elemental abundances inversion model to produce the elemental abundances. Based on these processing methods, the global abundance maps of U, K, and Th at a 5°×5° equal-area pixel are acquired by CE-1 GRS data. The paper gives a preliminary analysis of the uncertainties of the elemental abundances.展开更多
Information about the variability,and spatial distribution of iron abundance is important to understand lunar geological history and for future resource utilization. In this paper we present a preliminary model to pro...Information about the variability,and spatial distribution of iron abundance is important to understand lunar geological history and for future resource utilization. In this paper we present a preliminary model to produce an iron abundance map using images taken by an Imaging Interferometer on board the satellite Chang'E-1. Compared with the Clementine UVVIS images,the images from the Chang'E-1 satellite also allowed for the extraction of FeO abundance distributions on the Moon. However,the prelimi-nary model results suggest an underestimation of ~2 wt.% for the FeO content of the mare region and an overestimation of ~3 wt.% for the highland region.展开更多
The distribution of titanium abundance on the lunar surface is important knowledge for lunar geologic studies and future resource utilization.In this paper,we develop a preliminary model based on"ground truths&qu...The distribution of titanium abundance on the lunar surface is important knowledge for lunar geologic studies and future resource utilization.In this paper,we develop a preliminary model based on"ground truths"from Apollo and Luna sample-return sites to produce a titanium abundance map from Chang’E-1 Imaging Interferometer(IIM) images.The derived TiO2 abundances are validated with Clementine UVVIS results in several regions,including lunar highlands neighboring the Apollo 16 landing site,and high-Ti and low-Ti maria near the standard site of Mare Serenitatis(MS2) .The validation results show that TiO2 abundances modeled with Chang’E-1 IIM data are overestimated for highlands(~0.7 wt.%) and low-Ti maria(~1.5 wt.%) and underestimated for high-Ti maria(~0.8 wt.%).展开更多
By using crater impact morphological theory and mathematics modeling,the paper studies the cratering process and morphological features of the Xiuyan Crater in Northeast China based on remote sensing imagery,digital e...By using crater impact morphological theory and mathematics modeling,the paper studies the cratering process and morphological features of the Xiuyan Crater in Northeast China based on remote sensing imagery,digital elevation model(DEM)and drilling and measuring data.The results show that:1)Simulated calculation indicates the diameter of the transient crater was1406±12 m and the depth was 497±4 m.The diameter of the final crater was 1758±15 m and the depth was 374.5±3.5 m;the thickness of the breccia lens was 188.5±0.5 m.The data is basically the same as previous drilling data.2)Preliminary determination of the size of Xiuyan impactor:The diameter at about 55 m for an iron meteorite,and about 115 m for a stony meteorite.3)The depth-to-diameter ratio is 0.143,similar to the typical simple crater.The circularity index of the Xiuyan Crater is0.884,indicating erosion and degradation.4)The distribution pattern of radial fractures has priority in NW-SE and WNW-ESE and these fractures control the development and evolution of drainage inside the crater.展开更多
文摘Chang'E-1 is the first lunar mission in China,which was successfully launched on Oct.24th,2007.It was guided to crash on the Moon on March 1,2009,at 52.36°E,1.50°S,in the north of Mare Fecunditatis.The total mission lasted 495 days,exceeding the designed life-span about four months.1.37Terabytes raw data was received from Chang'E-1.It was then processed into 4Terabytes science data at different levels.A series of science results have been achieved by analyzing and applicating these data,especially "global image of the Moon of China's first lunar exploration mission".Four scientific goals of Chang'E-1 have been achieved.It provides abundant materials for the research of lunar sciences and cosmochemistry.Meanwhile these results will serve for China's future lunar missions.
基金supported by the National High Technology Research and Development Program of China(Nos2008AA12A212 and 2010AA122202)the National Natural Science Foundation of China(Nos41040031 and 40904024)
文摘Gamma-ray spectrometer (GRS) is one of the main payloads on the Chang'E-1 (CE-1) lunar probe, mainly aimed to detect the elemental abundances and distributions on the lunar surface. At 03:58 on 28 November 2007, it performed the first observation of the lunar gamma rays. As of 24 October 2008, 2105 h of effective gamma rays spectra had been acquired by CE-1 GRS, which covers the whole surface of the moon. This paper mainly describes the data processing procedures and methods of deriving the elemental abundances by using the CE-1 GRS time series corrected spectra: first, to bin data into pixels for mapping; then, to perform a background deduction of the cumulative spectra and obtain a peak area of the elements; and finally, to use the elemental abundances inversion model to produce the elemental abundances. Based on these processing methods, the global abundance maps of U, K, and Th at a 5°×5° equal-area pixel are acquired by CE-1 GRS data. The paper gives a preliminary analysis of the uncertainties of the elemental abundances.
基金supported by the National High-Tech Research and Development Program of China (2008AA12A212/211/213)China Postdoctoral Science Foundation (20090450580)+1 种基金the National Natural Science Foundation of China (11003012)the Young Researcher Grant of the National Astronomical Observatories,Chinese Academy of Sciences
文摘Information about the variability,and spatial distribution of iron abundance is important to understand lunar geological history and for future resource utilization. In this paper we present a preliminary model to produce an iron abundance map using images taken by an Imaging Interferometer on board the satellite Chang'E-1. Compared with the Clementine UVVIS images,the images from the Chang'E-1 satellite also allowed for the extraction of FeO abundance distributions on the Moon. However,the prelimi-nary model results suggest an underestimation of ~2 wt.% for the FeO content of the mare region and an overestimation of ~3 wt.% for the highland region.
基金supported by the National High-Tech Research and Development Program of China(2008AA12A212/211/213,2009AA122201, 2010AA122203)China Postdoctoral Science Foundation(20090450580)National Natural Science Foundation of China(11003012)
文摘The distribution of titanium abundance on the lunar surface is important knowledge for lunar geologic studies and future resource utilization.In this paper,we develop a preliminary model based on"ground truths"from Apollo and Luna sample-return sites to produce a titanium abundance map from Chang’E-1 Imaging Interferometer(IIM) images.The derived TiO2 abundances are validated with Clementine UVVIS results in several regions,including lunar highlands neighboring the Apollo 16 landing site,and high-Ti and low-Ti maria near the standard site of Mare Serenitatis(MS2) .The validation results show that TiO2 abundances modeled with Chang’E-1 IIM data are overestimated for highlands(~0.7 wt.%) and low-Ti maria(~1.5 wt.%) and underestimated for high-Ti maria(~0.8 wt.%).
基金supported by National Natural Science Foundation of China(Grant No.60972141)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA04077200)National High-Tech Research and Development Program of China(Grant No.2010AA122202)
文摘By using crater impact morphological theory and mathematics modeling,the paper studies the cratering process and morphological features of the Xiuyan Crater in Northeast China based on remote sensing imagery,digital elevation model(DEM)and drilling and measuring data.The results show that:1)Simulated calculation indicates the diameter of the transient crater was1406±12 m and the depth was 497±4 m.The diameter of the final crater was 1758±15 m and the depth was 374.5±3.5 m;the thickness of the breccia lens was 188.5±0.5 m.The data is basically the same as previous drilling data.2)Preliminary determination of the size of Xiuyan impactor:The diameter at about 55 m for an iron meteorite,and about 115 m for a stony meteorite.3)The depth-to-diameter ratio is 0.143,similar to the typical simple crater.The circularity index of the Xiuyan Crater is0.884,indicating erosion and degradation.4)The distribution pattern of radial fractures has priority in NW-SE and WNW-ESE and these fractures control the development and evolution of drainage inside the crater.