Rare-earth doped crystals carry great prospect in developing ensemble-based solid state quantum memories for remote quantum communication and fast quantum processing applications. In recent years, with this system, re...Rare-earth doped crystals carry great prospect in developing ensemble-based solid state quantum memories for remote quantum communication and fast quantum processing applications. In recent years, with this system, remarkable quantum storage performances have been realized, and more exciting applications have been exploited, while the technical challenges are also significant. In this paper, we outlined the status quo in the development of rare-earth-based quantum memories from the point of view of different storage protocols, with a focus on the experimental demonstrations. We also analyzed the challenges and provided feasible solutions.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11904159 and 12004168)Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515110191)+2 种基金Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2019ZT08X324)the Guangdong Provincial Key Laboratory(Grant No.2019B121203002)the Key-Area Research and Development Program of Guangdong Province(Grant No.2018B030326001).
文摘Rare-earth doped crystals carry great prospect in developing ensemble-based solid state quantum memories for remote quantum communication and fast quantum processing applications. In recent years, with this system, remarkable quantum storage performances have been realized, and more exciting applications have been exploited, while the technical challenges are also significant. In this paper, we outlined the status quo in the development of rare-earth-based quantum memories from the point of view of different storage protocols, with a focus on the experimental demonstrations. We also analyzed the challenges and provided feasible solutions.