期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Global Warming Effects on Irrigation Development and Crop Production: A World-Wide View 被引量:4
1
作者 Daniele De Wrachien mudlagiri b. goli 《Agricultural Sciences》 2015年第7期734-747,共14页
Despite the enormous advances in our ability to understand, interpret and ultimately manage the natural world, we have reached the 21st century in awesome ignorance of what is likely to unfold in terms of both the nat... Despite the enormous advances in our ability to understand, interpret and ultimately manage the natural world, we have reached the 21st century in awesome ignorance of what is likely to unfold in terms of both the natural changes and the human activities that affect the environment and the responses of the Earth to those stimuli. One certain fact is that the planet will be subjected to pressures hitherto unprecedented in its recent evolutionary history. The “tomorrow’s world” will not simply be an inflated version of the “today’s world”, with more people, more energy consumption and more industry, rather it will be qualitatively different from today in at least three important respects. First, new technology will transform the relationship between man and the natural world. An example is the gradual transition from agriculture that is heavily dependent on chemicals to one that is essentially biologically intensive through the application of bio-technologies. Consequently, the release of bio-engineered organisms is likely to pose new kinds of risks if the development and use of such organisms are not carefully controlled. Second, society will be moving beyond the era of localized environmental problems. What were once local incidents of natural resource impairment shared throughout a common watershed or basin, now involve many neighboring countries. What were once acute, short-lived episodes of reversible damage now affect many generations. What were once straightforward questions of conservation versus development now reflect more complex linkages. The third major change refers to climate variations. It is nowadays widely accepted that the increasing concentration of the so-called greenhouse gases in the atmosphere is altering the Earth’s radiation balance and causing the temperature to rise. This process in turn provides the context for a chain of events which leads to changes in the different components of the hydrological cycle, such as evapotranspiration rate, intensity and frequency of precipitation, river flows, soil moisture and groundwater recharge. Mankind is expected to respond to these effects by taking adaptive measures including changing patterns of land use, adopting new strategies for soil and water management and looking for non-conventional water resources (e.g. saline/brackish waters, desalinated water, and treated wastewater). All these problems will become more pronounced in the years to come, as society enters an era of increasingly complex paths towards the global economy. In this context, engineers and decision-makers need to systematically review planning principles, design criteria, operating rules, contingency plans and management policies for new infra-structures. In relation to these issues and based on available information, this report gives an overview of current and future (time horizon 2025) irrigation and food production development around the world. Moreover, the paper analyses the results of the most recent and advanced General Circulation Models for assessing the hydrological impacts of climate variability on crop requirements, water availability and the planning and design process of irrigation systems. Finally, a five-step planning and design procedure is proposed that is able to integrate, within the development process, the hydrological consequences of climate change. For researchers interested in irrigation and drainage and in crop production under changing climate conditions, references have been included, under developments in irrigation section on Page 3. Many climate action plans developed by few cities, states and various countries are cited for policy makers to follow or to make a note off. Few citations are also included in the end to educate every one of us, who are not familiar with the scientific work of our colleagues, related to global warming. The colleagues are from different areas, physics, mathematics, agricultural engineering, crop scientists and policy makers in United Nations. Most of the citation links do open, when you click on them. If it does not, copy and paste the link on any web browsers. 展开更多
关键词 GLOBAL WARMING Prediction Models IRRIGATION Food Land and Water SHORTAGE and Few Sample DEVELOPMENT Plans in Operation for GLOBAL WARMING
下载PDF
Effects of chelating agents on protein, oil, fatty acids, and minerals in soybean seed 被引量:3
2
作者 mudlagiri b. goli Manju Pande Nacer bellaloui 《Agricultural Sciences》 2012年第4期517-523,共7页
Soybean seed is a major source of protein and oil for human diet. Since not much information is available on the effects of chelating agents on soybean seed composition constituents, the current study aimed to investi... Soybean seed is a major source of protein and oil for human diet. Since not much information is available on the effects of chelating agents on soybean seed composition constituents, the current study aimed to investigate the effects of various chelating agents on soybean [(Glycine max (L.) Merr.)] seed protein, oil, fatty acids, and mineral concentrations. Three chelating agent [citric acid (CA), disodium EDTA (DA), and Salicylic acid (SA)] were applied separately or combined with ferrous (Fe2+) ion (CA + Fe, EDTA + Fe, and SA + Fe) to three-week-old soybean plants. After application, the plants were allowed to grow until harvest maturity under greenhouse conditions. The results showed that CA, DA, SA, and Fe resulted in an increase of oleic acid from 13.0% to 33.5%. However, these treatments resulted in a decrease of linolenic acid from 17.8 to 31.0%. The treatments with CA and SA applications increased protein from 2.9% to 3.4%. The treatments DA + Fe and SA + Fe resulted in an increase in oil from 6.8% to 7.9%. Seed macro- and micro-elements were also altered. The results indicated that the CA, SA, DA, and Fe treatments can alter seed protein, oil, fatty acids, and mineral concentrations. Further studies are needed for conclusive results. 展开更多
关键词 CHELATING Agents FATTY ACIDS MINERALS OIL Protein SOYBEAN Seed Composition
下载PDF
Seed protein, oil, fatty acids, and minerals concentration as affected by foliar K-glyphosate applications in soybean cultivars 被引量:1
3
作者 Manju Pande mudlagiri b. goli +1 位作者 Tyneiseca Epps Nacer bellaloui 《Agricultural Sciences》 2012年第6期848-853,共6页
Previous studies showed that glyphosate (Gly) may chelate cation nutrients, including potassium (K), which might affect the nutritional status of soybean seed. The objective of this study was to evaluate seed composit... Previous studies showed that glyphosate (Gly) may chelate cation nutrients, including potassium (K), which might affect the nutritional status of soybean seed. The objective of this study was to evaluate seed composition (protein, oil, fatty acids, and minerals) as influenced by foliar applications of K + Gly. A greenhouse experiment was conducted at Mississippi Valley State University, using two glyphosate-resistant soybean cultivars DK 4968 and Pioneer 95Y70 grown in a randomized complete block design. The treatments were foliar applications of K alone, Gly alone, K + Gly combined, and nontreated control (C). A single application of potassium (1.75% as K2SO4) was applied, and Gly was applied at a rate of 0.75 ae/ha at V5 stage. Leaf samples were harvested one week after treatment (1WAT) and 3WAT. Mature seeds were collected at harvest maturity (R8). The results showed that K, nitrogen (N), and phosphorus (P) concentrations increased in leaves in K alone and K + Gly treatments at 1WAT, but significantly increased at 3WAT in all treatments. The concentration of iron (Fe) and zinc (Zn) showed a decrease in leaf concentration in Gly and K + Gly treatments compared to C. Boron (B) concentration increased in Gly treatment. Seed protein percentage was higher in all treatments in cultivar DK 4968, and the increase was about 4.0% in K treatment, 6.9% in Gly treatment, and 3.5% in K + Gly treatment compared to C. The opposite trend was observed in oil concentration, especially in Gly treatment where the percentage decrease was 11.2% compared to C. Stearic fatty acid was significantly higher in K + Gly treatment compared to K treatment for DK 4968. A higher percentage increase in linolenic acid was observed in DK 4968 in K treatment (an increase of 24.5%) and in K + Gly treatment (an increase of 29.5%) compared to C. In Pioneer 95Y70, the decrease in oil was 2.7% in K treatment and 2.3% in K + Gly treatment compared to C. Stearic acid in Pioneer 95Y70 was significantly higher in Gly treatment, an increase of 8.3%, compared to C. Our research demonstrated that foliar application of K and Gly altered mineral concentration in leaves and shifted seed composition towards protein and stearic concentration. Further research under field conditions is needed before final conclusions are made. 展开更多
关键词 FATTY ACIDS GLYPHOSATE Nutrition OIL Potassium Protein Seed Composition Soybean
下载PDF
Effect of Foliar and Soil Application of Potassium Fertilizer on Soybean Seed Protein, Oil, Fatty Acids, and Minerals
4
作者 Manju Pande mudlagiri b. goli Nacer bellaloui 《American Journal of Plant Sciences》 2014年第5期541-548,共8页
The objective of this research was to evaluate the effectiveness of soil and foliar application of potassium (K) on leaf and seed mineral concentration levels, and seed composition (protein, oil, fatty acids, and mine... The objective of this research was to evaluate the effectiveness of soil and foliar application of potassium (K) on leaf and seed mineral concentration levels, and seed composition (protein, oil, fatty acids, and minerals). Soybean cultivar (Pioneer 95470) of maturity group 5.7 was grown in a repeated greenhouse experiment in a randomized complete block design. Treatment consisted of two concentrations of foliar K application (T1, rate of 1.75% and T2, rate of 2.5%) and soil application (T3, rate of 190 mg/kg and T4, rate of 380 mg/kg). Potassium was applied for each type at V3 (vegetative) and R3 (beginning of seed pod initiation) stages. The results showed higher K and S concentrations in leaves in T1 and T2. The concentrations of B and Zn decreased in all treatments, whereas Fe concentration increased in T1 and T3. In seeds, most mineral concentrations were stable, except for Fe which increased in both T1 and T3. Seed protein percentage increased 3.0% in T3 compared with the control (no K application). Seed oil percentage showed a general decrease in all the treatments, except for 3.2% increase in T4. Palmitic acid percentages showed significant increase in all concentrations, the highest percentage increase of 16.9% was observed in T4. Stearic acid increased in T2 and T3. Linoleic acid percentages increased in both foliar treatments, but linolenic acid percentage increased in high soil treatment T4 alone, with an increase of 12.2% in comparison to the control. Significant decrease (15.8%) in linoleic acid was found in foliar application, T2. Oleic acid decreased uniformly in all treatments, where the highest decrease (19.2%) was observed in soil application, T4. Our research demonstrated that both foliar and soil application of K were found to selectively alter seed composition. Further research is needed to be conducted under field conditions before conclusions can be made. 展开更多
关键词 POTASSIUM SOYBEAN SEED MINERALS SEED COMPOSITION FOLIAR Application
下载PDF
The Role of Metal Ions in Protein and Fatty Acids Biosynthesis in Soybean under Micronutrients Application to Soil
5
作者 mudlagiri b. goli Pande Manju +2 位作者 Kibet Daniel Nacer bellaloui Daniele De Wrachien 《Agricultural Sciences》 2018年第6期741-749,共9页
The present study is part of our ongoing investigation to study the role of trace elements on soybean seed composition (protein, oil, and fatty acids). This study was conducted to study the effects of five trace eleme... The present study is part of our ongoing investigation to study the role of trace elements on soybean seed composition (protein, oil, and fatty acids). This study was conducted to study the effects of five trace elements (Mn, Cu, Zn, Mo, B). The treatments of Mn, Cu, Zn, Mo, and B were chlorides, except Mo as oxide, and B as boric acid. The treatments were Mn, Cu, Zn, Mo, and B alone and in combination with the chelating agent citric acid (CA), for example Mn + CA, Cu + CA, and Zn + CA. Soybean cultivar (Bolivar with maturity group V) was grown in a repeated greenhouse experiment in a randomized complete block design. The compounds were applied to three-week-old soybean plants at V3 (vegetative) and at R3 (beginning of seed-pod initiation) stages. The plants were allowed to grow until maturity under greenhouse conditions. The harvested seeds were analyzed for mineral, protein, and fatty acid contents. Results showed that Mn, Cu, and B treatments increased seed protein, while Zn, Mo, Cu + CA, and B + CA decreased the protein. Treatments of Zn, Mo, CA, Cu + CA, Zn + CA, Mo + CA, and B + CA increased the oil. Treatments of Mn and Cu decreased the oil. The Cu and B treatments increased oleic acid by 8.0% and 7.4%, respectively for Cu and B. Treatments of Mn, Mo, CA, and Mn + CA, Cu + CA, Zn + CA, Mo + CA, and B + CA decreased oleic acid by 0.6% to 14.4%. Treatments of Cu, Zn, Mo, B, CA, Mn and their combination with CA increased linoleic acid by 1.3% to 6.5%. Our goal was to identify the trace elements that would make desirable alteration in the seed composition qualities. 展开更多
关键词 SOYBEAN Cu Mn Zn Mo and B Citric Acid (CA) Protein Oil and FATTY ACIDS
下载PDF
Effects of Soil Applications of Micro-Nutrients and Chelating Agent Citric Acid on Mineral Nutrients in Soybean Seeds
6
作者 mudlagiri b. goli Manju Pande +1 位作者 Nacer bellaloui Daniele De Wrachien 《Agricultural Sciences》 2015年第11期1404-1411,共8页
Micro-nutrient deficiency in soil results in crop yield loss and poor seed quality. Correcting this deficiency is normally done by foliar or soil application. The objective of this research was to determine the effect... Micro-nutrient deficiency in soil results in crop yield loss and poor seed quality. Correcting this deficiency is normally done by foliar or soil application. The objective of this research was to determine the effects of soil applications of five micro-nutrients (Mn, Cu, Zn, Mo, and B) alone and in combination with a chelating agent citric acid (CA) on soybean leaf and seed nutrients. Source of micro-nutrient compounds were MnCl2, CuCl2, ZnCl2, MoO3, and H3BO3. Our hypothesis was that micro-and macro-nutrients may be transported to leaves and then to seeds at different rates. They may interact synergistically or competitively during the uptake process. A greenhouse experiment was conducted at Mississippi Valley State University, Itta Bena, Mississippi, USA. Soybean cultivar, Bolivar (maturity group V), was applied with micro-nutrients-chelating agent citric acid at V3 and R3 (pod initiation) stage. The results showed that applications of Cu, Zn, B and Mo increased three unrolled trifoliate leaves Cu, Zn, B by 26.5%, 13.8%, 113% and Mo increased to 179 mg/kg, respectively in the leaves. Also, the application of “Cu, Zn, B and Mo increased Cu, Zn, B by 55.5%, 8.2%, 28.6% and Mo increased to 202 mg/kg” respectively in soybean seeds. Application of Mn had no direct effect on increasing Mn either in leaves or in seeds, however, Mn and Mn + CA treatment affected other mineral contents. Application of Cu, Zn, Mo, B and CA increased macro-nutrients K, N, P, Mg, and S. Irrespective of the applications, the nutrient increase trend in seed was Na > Fe > Zn > Mn > B > Cu > Mo. However, Mo application resulted in the following seed nutrient accumulation pattern: Na > Mo > Fe > Zn > Mn > B > Cu. This may suggest that Mo had higher mobility to seeds than other micro-nutrients. Combination of soil application of Mo + CA increased Mo in leaves at V3 stage;however, Mo + CA soil application during pod-filling stage had no significant effects on Mo accumulation in seeds. The current research showed that some micro-nutrient application with the chelating agent CA could increase seed nutrients. Since these results are conducted under greenhouse experiments, further research under field conditions is needed before conclusive recommendations are made. 展开更多
关键词 Chealting Agent Citric ACID Micro-Element Applications SEED MINERALS SOYBEAN SEEDS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部