The objective of this research is to introduce the use of different types of neural networks in human hand gesture recognition for static images as well as for dynamic gestures. This work focuses on the ability of neu...The objective of this research is to introduce the use of different types of neural networks in human hand gesture recognition for static images as well as for dynamic gestures. This work focuses on the ability of neural networks to assist in Arabic Sign Language (ArSL) hand gesture recognition. We have presented the use of feedforward neural networks and recurrent neural networks along with its different architectures;partially and fully recurrent networks. Then we have tested our proposed system;the results of the experiment have showed that the suggested system with the fully recurrent architecture has had a performance with an accuracy rate 95% for static gesture recognition.展开更多
文摘The objective of this research is to introduce the use of different types of neural networks in human hand gesture recognition for static images as well as for dynamic gestures. This work focuses on the ability of neural networks to assist in Arabic Sign Language (ArSL) hand gesture recognition. We have presented the use of feedforward neural networks and recurrent neural networks along with its different architectures;partially and fully recurrent networks. Then we have tested our proposed system;the results of the experiment have showed that the suggested system with the fully recurrent architecture has had a performance with an accuracy rate 95% for static gesture recognition.