期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
LARGE SIGNAL DISCRETE-TIME MODEL FOR PARALLELED BUCK CONVERTERS
1
作者 muhammad Mansoor +1 位作者 Khan 吴智铭 《Journal of Shanghai Jiaotong university(Science)》 EI 2002年第1期54-58,共5页
As a number of switch combinations are involved in operation of multi converter system, conventional methods for obtaining discrete time large signal model of these converter systems result in a very complex solution.... As a number of switch combinations are involved in operation of multi converter system, conventional methods for obtaining discrete time large signal model of these converter systems result in a very complex solution. A simple sampled data technique for modeling distributed dc dc PWM converters system (DCS) was proposed. The resulting model is nonlinear and can be linearized for analysis and design of DCS. These models are also suitable for fast simulation of these networks. As the input and output of dc dc converters are slow varying, suitable model for DCS was obtained in terms of the finite order input/output approximation. 展开更多
关键词 DC-DC CONVERTERS PARALLEL CONVERTERS MODELING and SIMULATION DISTRIBUTED CONVERTERS systems
下载PDF
Negative Poisson’s ratio locally resonant seismic metamaterials vibration isolation barrier
2
作者 Haibin Ding Nianyong Huang +2 位作者 muhammad Changjie Xu Lihong Tonog 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第8期239-252,共14页
In recent decades,the application of seismic metamaterials to protect civil infrastructures being free of the damage of earthquakes has been attracting extensive attention.Specifically,the proposed locally resonant se... In recent decades,the application of seismic metamaterials to protect civil infrastructures being free of the damage of earthquakes has been attracting extensive attention.Specifically,the proposed locally resonant seismic metamaterials provide the probability of isolating the low-frequency seismic wave using a small-size isolation barrier.However,in previous studies,the energy absorption properties of locally resonant seismic metamaterials remain one of the least understood aspects of isolation.Benefit from the fascinating energy absorption characteristic of negative Poisson ratio(NPR)metamaterial,we creatively design a new seismic metamaterial structure by assembling the locally resonant seismic metamaterial and NPR metamaterial,to isolate seismic waves.The sound cone technique combining the transmission spectrum is employed to identify the surface wave from the hybrid waves.The generation mechanism of frequency bandgap and the isolation effectiveness of the proposed seismic metamaterial are discussed in detail.The results indicate that the generation of ultra-low and ultra-wide frequency bandgap with the range of 0.65 Hz–18.9 Hz is attributed to the locally resonant and energy absorption of the proposed seismic metamaterial structure and the excellent isolation effect is achieved by transforming the surface wave into the bulk wave.The frequency bandgap narrows as the distance increases between each resonator.In addition,the mechanical properties of the NPR bearing,such as the Poisson ratio,mass density,and elastic modulus,have remarkable impact on the frequency bandgap,especially on the upper bound frequency.In practical engineering,the NPR bearing with a low Poisson ratio,small mass density,and high elastic modulus is suggested for the design of the NPR locally resonant seismic metamaterial structures.Time domain analysis for the practical seismic wave verifies that the proposed seismic metamaterial has a promising application in isolating ultra-low and ultra-wide seismic waves,with the isolation effectiveness larger than 70%.This work contributes a new locally resonance seismic metamaterial design idea for isolating and adjusting the low-frequency seismic wave. 展开更多
关键词 Seismic metamaterials Locally resonant Negative Poisson ratio(NPR) Seismic waves Frequency bandgap Vibration isolation barrier
原文传递
A Novel Application of Multi-Resonant Dissipative Elastic Metahousing for Bearings 被引量:3
3
作者 muhammad C.W.Lim N.S.Vyas 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2021年第4期449-465,共17页
Bearing as an important machine element is widely used for industrial and automotive applications.At certain operational speed,bearings induce disturbing vibrations and noises that affect machine service life,producti... Bearing as an important machine element is widely used for industrial and automotive applications.At certain operational speed,bearings induce disturbing vibrations and noises that affect machine service life,productivity and passenger comfort in case of vehicle applications.Dissipative elastic metamaterials have caught considerable attention of scientific community due to their effective medium properties and peculiar dynamic characteristics including frequency bandgaps that can be effectively applied to attenuate and control undesirable vibration and noises.Although a substantial amount of theoretical work for effective medium characteristics and dynamic properties of acoustic/elastic metamaterials has been reported,the practical design and application of these composite structures for real-life engineering problems still remain unexplored.The present study intends to investigate a potential application of dissipative elastic metamaterials in controlling the bearing-generated vibration and noises over an ultrawide frequency range.The study is based on a simple analytical model together with rigorous finite element numerical simulations.It has been established that the dissipative characteristic of resonant system caused by larger material mismatch broadens the local resonance bandgaps beyond the bounding resonance frequency at the cost of wave transmission.In order to achieve broadband vibration and noise control,multi-resonant composite structures are embedded inside the bearing housing in five different layers.The reported results revealed the presence of broadband wave attenuation zone distributed from 3 to 52 kHz with consideration of material damping.The bearing-generated vibration and noises lying inside the wave attenuation zone will be mitigated.This feasibility study provides a new concept for the design and application of acoustic/elastic metamaterials in the bearing industry to improve machine service life and to enhance productivity and passenger comfort. 展开更多
关键词 Bearing metahousing Dissipative elastic metamaterials Frequency Local resonance bandgap Vibration attenuation zone
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部