A new technique to reduce the influence of metallic carbon nanotubes(CNTs)relevant for large-scale integrated circuits based on CNT-nanonet transistorsis proposed and verified.Historically,electrical and chemical filt...A new technique to reduce the influence of metallic carbon nanotubes(CNTs)relevant for large-scale integrated circuits based on CNT-nanonet transistorsis proposed and verified.Historically,electrical and chemical filtering of the metallic CNTs have been used to improve the ON/OFF ratio of CNT-nanonet transistors;however,the corresponding degradation in ON-current has made these techniques somewhat unsatisfactory.Here,we abandon the classical approaches in favor of a new approach based on relocation of asymmetric percolation threshold of CNT-nanonet transistors by a technique called“striping”;this allows fabrication of transistors with ON/OFF ratio>1000 and ON-current degradation no more than a factor of 2.We offer first principle numerical models,experimental confirmation,and renormalization arguments to provide a broad theoretical and experimental foundation of the proposed method.展开更多
基金the Network for Computational Nanotechnology and the Lilly Foundation for financial supportthe National Science Foundation(NIRT-0403489)+1 种基金the Department of Energy(DE-FG02-07ER46471)Motorola,Inc.,the Frederick-Seitz Materials Research Laboratory,and the Center for Microanalysis of Materials(DE-FG02-07ER46453 and DE-FG02-07ER46471)at the University of Illinois.
文摘A new technique to reduce the influence of metallic carbon nanotubes(CNTs)relevant for large-scale integrated circuits based on CNT-nanonet transistorsis proposed and verified.Historically,electrical and chemical filtering of the metallic CNTs have been used to improve the ON/OFF ratio of CNT-nanonet transistors;however,the corresponding degradation in ON-current has made these techniques somewhat unsatisfactory.Here,we abandon the classical approaches in favor of a new approach based on relocation of asymmetric percolation threshold of CNT-nanonet transistors by a technique called“striping”;this allows fabrication of transistors with ON/OFF ratio>1000 and ON-current degradation no more than a factor of 2.We offer first principle numerical models,experimental confirmation,and renormalization arguments to provide a broad theoretical and experimental foundation of the proposed method.