:Agriculture has been an important research area in the field of image processing for the last five years.Diseases affect the quality and quantity of fruits,thereby disrupting the economy of a country.Many computerize...:Agriculture has been an important research area in the field of image processing for the last five years.Diseases affect the quality and quantity of fruits,thereby disrupting the economy of a country.Many computerized techniques have been introduced for detecting and recognizing fruit diseases.However,some issues remain to be addressed,such as irrelevant features and the dimensionality of feature vectors,which increase the computational time of the system.Herein,we propose an integrated deep learning framework for classifying fruit diseases.We consider seven types of fruits,i.e.,apple,cherry,blueberry,grapes,peach,citrus,and strawberry.The proposed method comprises several important steps.Initially,data increase is applied,and then two different types of features are extracted.In the first feature type,texture and color features,i.e.,classical features,are extracted.In the second type,deep learning characteristics are extracted using a pretrained model.The pretrained model is reused through transfer learning.Subsequently,both types of features are merged using the maximum mean value of the serial approach.Next,the resulting fused vector is optimized using a harmonic threshold-based genetic algorithm.Finally,the selected features are classified using multiple classifiers.An evaluation is performed on the PlantVillage dataset,and an accuracy of 99%is achieved.A comparison with recent techniques indicate the superiority of the proposed method.展开更多
Agriculture is the backbone of each country,and almost 50%of the population is directly involved in farming.In Pakistan,several kinds of fruits are produced and exported the other countries.Citrus is an important frui...Agriculture is the backbone of each country,and almost 50%of the population is directly involved in farming.In Pakistan,several kinds of fruits are produced and exported the other countries.Citrus is an important fruit,and its production in Pakistan is higher than the other fruits.However,the diseases of citrus fruits such as canker,citrus scab,blight,and a few more impact the quality and quantity of this Fruit.The manual diagnosis of these diseases required an expert person who is always a time-consuming and costly procedure.In the agriculture sector,deep learning showing significant success in the last five years.This research work proposes an automated framework using deep learning and best feature selection for citrus diseases classification.In the proposed framework,the augmentation technique is applied initially by creating more training data from existing samples.They were then modifying the two pre-trained models named Resnet18 and Inception V3.The modified models are trained using an augmented dataset through transfer learning.Features are extracted for each model,which is further selected using Improved Genetic Algorithm(ImGA).The selected features of both models are fused using an array-based approach that is finally classified using supervised learning classifiers such as Support Vector Machine(SVM)and name a few more.The experimental process is conducted on three different datasets-Citrus Hybrid,Citrus Leaf,and Citrus Fruits.On these datasets,the best-achieved accuracy is 99.5%,94%,and 97.7%,respectively.The proposed framework is evaluated on each step and compared with some recent techniques,showing that the proposed method shows improved performance.展开更多
基金This research was supported by X-mind Corps program of National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(No.2019H1D8A1105622)and the Soonchunhyang University Research Fund.
文摘:Agriculture has been an important research area in the field of image processing for the last five years.Diseases affect the quality and quantity of fruits,thereby disrupting the economy of a country.Many computerized techniques have been introduced for detecting and recognizing fruit diseases.However,some issues remain to be addressed,such as irrelevant features and the dimensionality of feature vectors,which increase the computational time of the system.Herein,we propose an integrated deep learning framework for classifying fruit diseases.We consider seven types of fruits,i.e.,apple,cherry,blueberry,grapes,peach,citrus,and strawberry.The proposed method comprises several important steps.Initially,data increase is applied,and then two different types of features are extracted.In the first feature type,texture and color features,i.e.,classical features,are extracted.In the second type,deep learning characteristics are extracted using a pretrained model.The pretrained model is reused through transfer learning.Subsequently,both types of features are merged using the maximum mean value of the serial approach.Next,the resulting fused vector is optimized using a harmonic threshold-based genetic algorithm.Finally,the selected features are classified using multiple classifiers.An evaluation is performed on the PlantVillage dataset,and an accuracy of 99%is achieved.A comparison with recent techniques indicate the superiority of the proposed method.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2021R1A2C1010362)and the Soonchunhyang University Research Fund.
文摘Agriculture is the backbone of each country,and almost 50%of the population is directly involved in farming.In Pakistan,several kinds of fruits are produced and exported the other countries.Citrus is an important fruit,and its production in Pakistan is higher than the other fruits.However,the diseases of citrus fruits such as canker,citrus scab,blight,and a few more impact the quality and quantity of this Fruit.The manual diagnosis of these diseases required an expert person who is always a time-consuming and costly procedure.In the agriculture sector,deep learning showing significant success in the last five years.This research work proposes an automated framework using deep learning and best feature selection for citrus diseases classification.In the proposed framework,the augmentation technique is applied initially by creating more training data from existing samples.They were then modifying the two pre-trained models named Resnet18 and Inception V3.The modified models are trained using an augmented dataset through transfer learning.Features are extracted for each model,which is further selected using Improved Genetic Algorithm(ImGA).The selected features of both models are fused using an array-based approach that is finally classified using supervised learning classifiers such as Support Vector Machine(SVM)and name a few more.The experimental process is conducted on three different datasets-Citrus Hybrid,Citrus Leaf,and Citrus Fruits.On these datasets,the best-achieved accuracy is 99.5%,94%,and 97.7%,respectively.The proposed framework is evaluated on each step and compared with some recent techniques,showing that the proposed method shows improved performance.