期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An Integrated Deep Learning Framework for Fruits Diseases Classification 被引量:2
1
作者 Abdul Majid muhammad Attique Khan +5 位作者 Majed Alhaisoni muhammad asfand eyar Usman Tariq Nazar Hussain Yunyoung Nam Seifedine Kadry 《Computers, Materials & Continua》 SCIE EI 2022年第4期1387-1402,共16页
:Agriculture has been an important research area in the field of image processing for the last five years.Diseases affect the quality and quantity of fruits,thereby disrupting the economy of a country.Many computerize... :Agriculture has been an important research area in the field of image processing for the last five years.Diseases affect the quality and quantity of fruits,thereby disrupting the economy of a country.Many computerized techniques have been introduced for detecting and recognizing fruit diseases.However,some issues remain to be addressed,such as irrelevant features and the dimensionality of feature vectors,which increase the computational time of the system.Herein,we propose an integrated deep learning framework for classifying fruit diseases.We consider seven types of fruits,i.e.,apple,cherry,blueberry,grapes,peach,citrus,and strawberry.The proposed method comprises several important steps.Initially,data increase is applied,and then two different types of features are extracted.In the first feature type,texture and color features,i.e.,classical features,are extracted.In the second type,deep learning characteristics are extracted using a pretrained model.The pretrained model is reused through transfer learning.Subsequently,both types of features are merged using the maximum mean value of the serial approach.Next,the resulting fused vector is optimized using a harmonic threshold-based genetic algorithm.Finally,the selected features are classified using multiple classifiers.An evaluation is performed on the PlantVillage dataset,and an accuracy of 99%is achieved.A comparison with recent techniques indicate the superiority of the proposed method. 展开更多
关键词 Fruit diseases data augmentation deep learning classical features features fusion features selection
下载PDF
Citrus Diseases Recognition Using Deep Improved Genetic Algorithm 被引量:1
2
作者 Usra Yasmeen muhammad Attique Khan +5 位作者 Usman Tariq Junaid Ali Khan muhammad asfand eyar ChAvais Hanif Senghour Mey Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2022年第5期3667-3684,共18页
Agriculture is the backbone of each country,and almost 50%of the population is directly involved in farming.In Pakistan,several kinds of fruits are produced and exported the other countries.Citrus is an important frui... Agriculture is the backbone of each country,and almost 50%of the population is directly involved in farming.In Pakistan,several kinds of fruits are produced and exported the other countries.Citrus is an important fruit,and its production in Pakistan is higher than the other fruits.However,the diseases of citrus fruits such as canker,citrus scab,blight,and a few more impact the quality and quantity of this Fruit.The manual diagnosis of these diseases required an expert person who is always a time-consuming and costly procedure.In the agriculture sector,deep learning showing significant success in the last five years.This research work proposes an automated framework using deep learning and best feature selection for citrus diseases classification.In the proposed framework,the augmentation technique is applied initially by creating more training data from existing samples.They were then modifying the two pre-trained models named Resnet18 and Inception V3.The modified models are trained using an augmented dataset through transfer learning.Features are extracted for each model,which is further selected using Improved Genetic Algorithm(ImGA).The selected features of both models are fused using an array-based approach that is finally classified using supervised learning classifiers such as Support Vector Machine(SVM)and name a few more.The experimental process is conducted on three different datasets-Citrus Hybrid,Citrus Leaf,and Citrus Fruits.On these datasets,the best-achieved accuracy is 99.5%,94%,and 97.7%,respectively.The proposed framework is evaluated on each step and compared with some recent techniques,showing that the proposed method shows improved performance. 展开更多
关键词 Citrus diseases data augmentation deep learning features selection features fusion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部