Selective hydrogenation of the carbonyl bond inα,β-unsaturated carbonyl compounds is rather challenging owing to the more feasible hydrogenation of ethylenic bond from both thermodynamic and kinetic aspects.Here,we ...Selective hydrogenation of the carbonyl bond inα,β-unsaturated carbonyl compounds is rather challenging owing to the more feasible hydrogenation of ethylenic bond from both thermodynamic and kinetic aspects.Here,we demonstrate a facile emulsionbased molecule-nanoparticle self-assembly strategy for the atomic engineering of Ir species on three-dimensional CeO_(2)spheres(Ir1@CeO_(2)).When applied to the hydrogenation ofα,β-unsaturated aldehydes,Ir1@CeO_(2)catalyst remarkably exhibited~100%selectivity towards unsaturated alcohols,whereas the formation of Ir nanoparticles on CeO_(2)drastically decreased the selectivity for unsaturated alcohols.Spectroscopic studies revealed that strong metal-support interactions triggered the charge transfer from Ir to CeO_(2),leading to the partial reduction of Ce^(4+)to Ce^(3+)along with the formation new Ir^(δ+)-O_(2)--Ce^(3+)(OV)interfaces.The electrophilic atomic Ir species at the Ir^(δ+)-O_(2)--Ce^(3+)(OV)interfaces would therefore preferentially adsorb and facilitate hydrogenation of polar C=O bond to achieve exceptional selectivity.展开更多
Single-molecule magnets (SMMs) are regarded as promising candidates for ultrahigh-density storage, quantum information processing and molecular spintronics. It is a crucial challenge for chemists to modulate magneti...Single-molecule magnets (SMMs) are regarded as promising candidates for ultrahigh-density storage, quantum information processing and molecular spintronics. It is a crucial challenge for chemists to modulate magnetic dynamics of SMMs. Here, we successfully synthesized two 3d-4f polynuclear compounds [Co2Dy(TTTTCl)2(MeOH)]NO3.3MeOH (1) and [Co2Dy(TTTTCl)2 (MeOH)][Co(HTTTTCl)](NO3)z-2.5MeOH'2H20 (2), where H3TTTTCl=2,2',2"-(((nitrilotris(ethane-2,1-diyl)) tris(azanediyl)) tris(methylene))tris-(4-chlorophenol). On applying the approach by co-crystallization of bulky diamagnetic moiety, the effective energy barrier enhances from 401 K (1) to 536 K (2), which are both among the highest d-f heterometallic SMMs.展开更多
基金the National Natural Science Foundation of China(No.21901007)the Natural Science Foundation of Anhui Province(No.2008085QB83)+1 种基金the Science and Technology Development Fund(FDCT)of Macao SAR(No.0032/2021/ITP)the University of Macao(No.MYRG2020-00026-FST)。
文摘Selective hydrogenation of the carbonyl bond inα,β-unsaturated carbonyl compounds is rather challenging owing to the more feasible hydrogenation of ethylenic bond from both thermodynamic and kinetic aspects.Here,we demonstrate a facile emulsionbased molecule-nanoparticle self-assembly strategy for the atomic engineering of Ir species on three-dimensional CeO_(2)spheres(Ir1@CeO_(2)).When applied to the hydrogenation ofα,β-unsaturated aldehydes,Ir1@CeO_(2)catalyst remarkably exhibited~100%selectivity towards unsaturated alcohols,whereas the formation of Ir nanoparticles on CeO_(2)drastically decreased the selectivity for unsaturated alcohols.Spectroscopic studies revealed that strong metal-support interactions triggered the charge transfer from Ir to CeO_(2),leading to the partial reduction of Ce^(4+)to Ce^(3+)along with the formation new Ir^(δ+)-O_(2)--Ce^(3+)(OV)interfaces.The electrophilic atomic Ir species at the Ir^(δ+)-O_(2)--Ce^(3+)(OV)interfaces would therefore preferentially adsorb and facilitate hydrogenation of polar C=O bond to achieve exceptional selectivity.
基金supported by the National Natural Science Foundation of China (21620102002, 91422302, 21701198)the Fundamental Research Funds for the Central Universities (17lgjc13, 17lgpy81)
文摘Single-molecule magnets (SMMs) are regarded as promising candidates for ultrahigh-density storage, quantum information processing and molecular spintronics. It is a crucial challenge for chemists to modulate magnetic dynamics of SMMs. Here, we successfully synthesized two 3d-4f polynuclear compounds [Co2Dy(TTTTCl)2(MeOH)]NO3.3MeOH (1) and [Co2Dy(TTTTCl)2 (MeOH)][Co(HTTTTCl)](NO3)z-2.5MeOH'2H20 (2), where H3TTTTCl=2,2',2"-(((nitrilotris(ethane-2,1-diyl)) tris(azanediyl)) tris(methylene))tris-(4-chlorophenol). On applying the approach by co-crystallization of bulky diamagnetic moiety, the effective energy barrier enhances from 401 K (1) to 536 K (2), which are both among the highest d-f heterometallic SMMs.