期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Performance enhancement of wing-based piezoaeroelastic energy harvesting through freeplay nonlinearity 被引量:3
1
作者 Abdessattar Abdelkefi muhammad r. hajj 《Theoretical & Applied Mechanics Letters》 CAS 2013年第4期14-17,共4页
We investigate experimentally how controlled freeplay nonlinearity affects harvesting energy from a wing-based piezoaeroelastic energy harvesting system. This system consisits of a rigid airfoil which is supported by ... We investigate experimentally how controlled freeplay nonlinearity affects harvesting energy from a wing-based piezoaeroelastic energy harvesting system. This system consisits of a rigid airfoil which is supported by a nonlinear torsional spring (freeplay) in the pitch degree of freedom and a linear fiexural spring in the plunge degree of freedom. By attaching a piezoelectric material (PSI-5A4E) to the plunge degree of freedom, we can convert aeroelastic vibrations to electrical energy. The focus of this study is placed on the effects of the freeplay nonlinearity gap on the behavior of the harvester in terms of cut-in speed and level of harvested power. Although the freeplay nonlinearity may result in subcritical Hopf bifurcations (catastrophic for real aircrafts), harvesting energy at low wind speeds is beneficial for designing piezoaeroelastic systems. It is demonstrated that increasing the freeplay nonlinearity gap can decrease the cut-in speed through a subcritical instability and gives the possibility to harvest energy at low wind speeds. The results also demonstrate that an optimum value of the load resistance exists, at which the level of the harvested power is maximized. 展开更多
关键词 energy harvesting freeplay nonlinearity piezoelectric material aeroelasticity experimental measurements
下载PDF
Role of wing morphing in thrust generation
2
作者 Mehdi Ghommem muhammad r. hajj +1 位作者 Philip S. Beran Ishwar K. Puri 《Theoretical & Applied Mechanics Letters》 CAS 2014年第3期35-41,共7页
In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and... In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles. 展开更多
关键词 bird flight thrust generation wing morphing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部