Carbon black is utilized as a conventional electrocatalyst support material for proton exchange membrane fuel cells. However, this support is prone to corrosion under oxidative and harsh environments, thus limiting th...Carbon black is utilized as a conventional electrocatalyst support material for proton exchange membrane fuel cells. However, this support is prone to corrosion under oxidative and harsh environments, thus limiting the durability of the fuel cells. Meanwhile, carbon corrosion would also weaken the linkage between Pt and the support material, which causes Pt agglomeration, and consequently, deterioration of the cell performance. To overcome the drawbacks of a Pt/C electrocatalyst, a hybrid support material comprising molybdenum disulfide and reduced graphene oxide is proposed and synthesized in this study to exploit the graphitic nature of graphene and the availability of the exposed edges of MoS2. TEM results show the uniform dispersion of Pt nanoparticles over the MoS2-rGO surface. Electrochemical measurements indicate higher ECSA retention and better ORR activity after 10000 potential cycles for Pt/MoS2-rGO as compared to Pt/C, demonstrating the improved durability for this hybrid support material.展开更多
基金financially aided by the National Key R&D Program of China(2016YFB0101201)the National Natural Science Foundation of China(21706158,21533005)~~
文摘Carbon black is utilized as a conventional electrocatalyst support material for proton exchange membrane fuel cells. However, this support is prone to corrosion under oxidative and harsh environments, thus limiting the durability of the fuel cells. Meanwhile, carbon corrosion would also weaken the linkage between Pt and the support material, which causes Pt agglomeration, and consequently, deterioration of the cell performance. To overcome the drawbacks of a Pt/C electrocatalyst, a hybrid support material comprising molybdenum disulfide and reduced graphene oxide is proposed and synthesized in this study to exploit the graphitic nature of graphene and the availability of the exposed edges of MoS2. TEM results show the uniform dispersion of Pt nanoparticles over the MoS2-rGO surface. Electrochemical measurements indicate higher ECSA retention and better ORR activity after 10000 potential cycles for Pt/MoS2-rGO as compared to Pt/C, demonstrating the improved durability for this hybrid support material.