A pot culture experiment was carried out to investigate the accumulation properties of mercury(Hg) in rice grain and cabbage grown in seven soil types(Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambos...A pot culture experiment was carried out to investigate the accumulation properties of mercury(Hg) in rice grain and cabbage grown in seven soil types(Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambosols, Calcaric Regosols, and Stagnic Anthrosols) spiked with different concentrations of Hg(CK, 0.25, 0.50, 1.00, 2.00, and 4.00 mg/kg). The results of this study showed that Hg accumulation of plants was significantly affected by soil types. Hg concentration in both rice grain and cabbage increased with soil Hg concentrations, but this increase differed among the seven soils. The stepwise multiple regression analysis showed that pH, Mn(II), particle size distribution, and cation exchange capacity have a close relationship with Hg accumulation in plants, which suggested that physicochemical characteristics of soils can affect the Hg accumulation in rice grain and cabbage. Critical Hg concentrations in seven soils were identified for rice grain and cabbage based on the maximum safe level for daily intake of Hg, dietary habits of the population, and Hg accumulation in plants grown in different soil types. Soil Hg limits for rice grain in Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambosols, Calcaric Regosols, and Stagnic Anthrosols were 1.10, 2.00, 2.60, 2.78, 1.53, 0.63, and 2.17 mg/kg, respectively, and critical soil Hg levels for cabbage are 0.27, 1.35, 1.80, 1.70, 0.69, 1.68, and 2.60 mg/kg, respectively.展开更多
基金supported by the Ministry of Environmental Protection of China(No.2011467057)the Fundamental Research Funds for the Central Universities of China
文摘A pot culture experiment was carried out to investigate the accumulation properties of mercury(Hg) in rice grain and cabbage grown in seven soil types(Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambosols, Calcaric Regosols, and Stagnic Anthrosols) spiked with different concentrations of Hg(CK, 0.25, 0.50, 1.00, 2.00, and 4.00 mg/kg). The results of this study showed that Hg accumulation of plants was significantly affected by soil types. Hg concentration in both rice grain and cabbage increased with soil Hg concentrations, but this increase differed among the seven soils. The stepwise multiple regression analysis showed that pH, Mn(II), particle size distribution, and cation exchange capacity have a close relationship with Hg accumulation in plants, which suggested that physicochemical characteristics of soils can affect the Hg accumulation in rice grain and cabbage. Critical Hg concentrations in seven soils were identified for rice grain and cabbage based on the maximum safe level for daily intake of Hg, dietary habits of the population, and Hg accumulation in plants grown in different soil types. Soil Hg limits for rice grain in Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambosols, Calcaric Regosols, and Stagnic Anthrosols were 1.10, 2.00, 2.60, 2.78, 1.53, 0.63, and 2.17 mg/kg, respectively, and critical soil Hg levels for cabbage are 0.27, 1.35, 1.80, 1.70, 0.69, 1.68, and 2.60 mg/kg, respectively.