期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Liver-Tumor Detection Using CNN ResUNet 被引量:1
1
作者 muhammad Sohaib Aslam muhammad Younas +6 位作者 muhammad umar sarwar muhammad Arif Shah Atif Khan MIrfan Uddin Shafiq Ahmad muhammad Firdausi Mazen Zaindin 《Computers, Materials & Continua》 SCIE EI 2021年第5期1899-1914,共16页
Liver tumor is the fifth most occurring type of tumor in men and the ninth most occurring type of tumor in women according to recent reports of Global cancer statistics 2018.There are several imaging tests like Comput... Liver tumor is the fifth most occurring type of tumor in men and the ninth most occurring type of tumor in women according to recent reports of Global cancer statistics 2018.There are several imaging tests like Computed Tomography(CT),Magnetic Resonance Imaging(MRI),and ultrasound that can diagnose the liver tumor after taking the sample from the tissue of the liver.These tests are costly and time-consuming.This paper proposed that image processing through deep learning Convolutional Neural Network(CNNs)ResUNet model that can be helpful for the early diagnose of tumor instead of conventional methods.The existing studies have mainly used the two Cascaded CNNs for liver segmentation and evaluation of Region Of Interest(ROI).This study uses ResUNet,an updated version of U-Net and ResNet Models that utilize the service of Residential blocks.We apply over method on the 3D-IRCADb01 dataset that is based on CT slices of liver tumor affected patients.The results showed the True Value Accuracy around 99%and F1 score performance around 95%.This method will be helpful for early and accurate diagnose of the Liver tumor to save the lives of many patients in the field of Biotechnology. 展开更多
关键词 LIVER TUMOR DIAGNOSE ResUNet CNNS SEGMENTATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部