This paper presents a Novel Windowing Algorithm for Electrocardiogram Feature Extraction and Pattern Recognition. The work presented here deals with a simple and efficient way of detecting ECG features that are P, Q, ...This paper presents a Novel Windowing Algorithm for Electrocardiogram Feature Extraction and Pattern Recognition. The work presented here deals with a simple and efficient way of detecting ECG features that are P, Q, R, S and T waves. Windowing method is used to select these waves. Windows are based on varying R-R intervals. It has been tested on ECG simulator data and also on different records of the MIT-BIH arrhythmia database, producing satisfactory results. ECG timing intervals are also required for monitoring the cardiac condition of patients. Hence after feature detections ECG timing intervals like the PR interval, QRS duration, the QT interval, the QT corrected interval and Vent Rate are efficiently calculated using proposed Formulae.展开更多
文摘This paper presents a Novel Windowing Algorithm for Electrocardiogram Feature Extraction and Pattern Recognition. The work presented here deals with a simple and efficient way of detecting ECG features that are P, Q, R, S and T waves. Windowing method is used to select these waves. Windows are based on varying R-R intervals. It has been tested on ECG simulator data and also on different records of the MIT-BIH arrhythmia database, producing satisfactory results. ECG timing intervals are also required for monitoring the cardiac condition of patients. Hence after feature detections ECG timing intervals like the PR interval, QRS duration, the QT interval, the QT corrected interval and Vent Rate are efficiently calculated using proposed Formulae.