This paper considers a massive single-input multiple-output(SIMO)system,where multiple singleantenna transmitters simultaneously communicate with a receiver equipped with a large number of antennas.Different from the ...This paper considers a massive single-input multiple-output(SIMO)system,where multiple singleantenna transmitters simultaneously communicate with a receiver equipped with a large number of antennas.Different from the conventional noncoherent transceivers which require a certain level of the statistical information on the channel fading,we propose a joint transceiver design method based on machine learning,requiring a limited number of channel realizations.In the proposed method,the multiple transmitters,the channel,and the receiver are represented with a deep neural network(NN),and an autoencoder is adopted to minimize the end-to-end transmission error probability.Besides,the relationship between the number of training samples and the transmission error probability is analyzed based on the confidence interval method.Simulation results show that the proposed NN-based transceiver achieves lower transmission error probability in typical scenarios,and is more robust against the channel parameters variation compared with the existing methods.展开更多
基金The work was supported in part by the Key Area R&D Program of Guangdong Province with Grant No.2018B030338001by the National Key R&D Program of China with Grant No.2018YFB1800800+2 种基金y Natural Science Foundation of China with grant NSFC-61629101by Guangdong Research Project No.2017ZT07X152by Shenzhen Key Lab Fund No.ZDSYS201707251409055.
文摘This paper considers a massive single-input multiple-output(SIMO)system,where multiple singleantenna transmitters simultaneously communicate with a receiver equipped with a large number of antennas.Different from the conventional noncoherent transceivers which require a certain level of the statistical information on the channel fading,we propose a joint transceiver design method based on machine learning,requiring a limited number of channel realizations.In the proposed method,the multiple transmitters,the channel,and the receiver are represented with a deep neural network(NN),and an autoencoder is adopted to minimize the end-to-end transmission error probability.Besides,the relationship between the number of training samples and the transmission error probability is analyzed based on the confidence interval method.Simulation results show that the proposed NN-based transceiver achieves lower transmission error probability in typical scenarios,and is more robust against the channel parameters variation compared with the existing methods.