Despite the gradual professionalization of the construction sector as well as the abundance of sand mining sites offered by the North Kivu, Democratic Republic of Congo Region, ignorance of materials by local builders...Despite the gradual professionalization of the construction sector as well as the abundance of sand mining sites offered by the North Kivu, Democratic Republic of Congo Region, ignorance of materials by local builders persists. This is the case of quarries extracting river sand used to make concrete and mortar. However, the dosages of the various constituents are most often chosen on the basis of experience without any prior characterization of this material. This paper presents a comprehensive review of the characterization of river sand for its use in concrete in DRC. The origin and global use of river sand in construction are presented in percentage terms to highlight the importance of river sand as a construction material. The physical properties of river sand, including particle size distribution, bulk density, absolute density, and cleanliness are discussed in detail. The paper examines the effect of variations in river sand properties on concrete behavior, including density and compressive strength. Overall, this paper emphasizes the need to properly characterize river sand before using it in construction to ensure durable, high-quality structures. This will avoid the problems that are observed in particular a bad behavior of the coating on the walls;cracks and crumbling of the beams, lintels, posts and even the ruin of the structures.展开更多
The following study is aimed at valorizing an important part of waste from building demolition, particularly concrete as a source of aggregates for their usage in n<span style="font-family:Verdana;">ew...The following study is aimed at valorizing an important part of waste from building demolition, particularly concrete as a source of aggregates for their usage in n<span style="font-family:Verdana;">ew hydraulic concrete formulation. The experimental study mainly consisted of physical characterization of natural and recycled aggregates respectively and the impact of the latter on some properties of the new formulated concrete, actually their respective consistencies for fresh concrete and mechanical strength for the hardened one. The outcome of the study shows that the recycled aggregates are m</span><span style="font-family:Verdana;">ore heterogeneous and have a high capacity of water absorption, but which still respects the current standards of concrete.</span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The need for additional water has been observed for recycled aggregates-based concrete so as to have the same workability. About the compressive strength, mechanical properties obviously show that, at 28 days from setting up, concretes from recycled aggregates can reach compressive strengths range between 20 and 25 MPa</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">without any sophisticated technology. So, these results show that we can efficiently contribute to the protection of environment by valorizing waste from concrete-based building demolition on the one hand;and the preservation of natural reserve on the other. And both advantages contribute to sustainable development overall goals.</span></span></span>展开更多
文摘Despite the gradual professionalization of the construction sector as well as the abundance of sand mining sites offered by the North Kivu, Democratic Republic of Congo Region, ignorance of materials by local builders persists. This is the case of quarries extracting river sand used to make concrete and mortar. However, the dosages of the various constituents are most often chosen on the basis of experience without any prior characterization of this material. This paper presents a comprehensive review of the characterization of river sand for its use in concrete in DRC. The origin and global use of river sand in construction are presented in percentage terms to highlight the importance of river sand as a construction material. The physical properties of river sand, including particle size distribution, bulk density, absolute density, and cleanliness are discussed in detail. The paper examines the effect of variations in river sand properties on concrete behavior, including density and compressive strength. Overall, this paper emphasizes the need to properly characterize river sand before using it in construction to ensure durable, high-quality structures. This will avoid the problems that are observed in particular a bad behavior of the coating on the walls;cracks and crumbling of the beams, lintels, posts and even the ruin of the structures.
文摘The following study is aimed at valorizing an important part of waste from building demolition, particularly concrete as a source of aggregates for their usage in n<span style="font-family:Verdana;">ew hydraulic concrete formulation. The experimental study mainly consisted of physical characterization of natural and recycled aggregates respectively and the impact of the latter on some properties of the new formulated concrete, actually their respective consistencies for fresh concrete and mechanical strength for the hardened one. The outcome of the study shows that the recycled aggregates are m</span><span style="font-family:Verdana;">ore heterogeneous and have a high capacity of water absorption, but which still respects the current standards of concrete.</span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The need for additional water has been observed for recycled aggregates-based concrete so as to have the same workability. About the compressive strength, mechanical properties obviously show that, at 28 days from setting up, concretes from recycled aggregates can reach compressive strengths range between 20 and 25 MPa</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">without any sophisticated technology. So, these results show that we can efficiently contribute to the protection of environment by valorizing waste from concrete-based building demolition on the one hand;and the preservation of natural reserve on the other. And both advantages contribute to sustainable development overall goals.</span></span></span>