Affordable hydrophobic hollow fibre membranes were prepared using kaolin and alumina based ceramic powders via a combined phase inversion and sintering technique,followed by a grafting with fluoroalkylsilane(FAS).The ...Affordable hydrophobic hollow fibre membranes were prepared using kaolin and alumina based ceramic powders via a combined phase inversion and sintering technique,followed by a grafting with fluoroalkylsilane(FAS).The crux of the matter in this paper is to study the changes in the properties of the hollow fibre membranes(gas permeation,mechanical strength,pore size,porosity,tortuosity,morphology,and contact angle)by the addition of alumina(Al2O3)to the pure kaolin with mono or multiparticle sizes.By varying the overall loading and particle size of alumina addition,different morphologies of the membranes were obtained due to the differences in the path lengths during phase inversion process for each solvent and nonsolvent exchange.The successful grafting with FAS was evidenced by the increase in contact angle from nearly equal to zero degree before grafting to 140°after grafting.Kaolin-alumina-4,one of the hollow fibres fabricated in this work,achieved a mean pore size of 0.25μm with the bending strength of 96.4 MPa and high nitrogen permeance of 2.3×10^(-5) mol·m^(-2)·Pa^(-1)·s^(-1),which makes the hollow fibre most suitable for the membrane contactor application.展开更多
Miniature optical fiber sensors with thin films as sensitive elements could open new fields for optical fiber sensor applications. Thin films work as sensitive elements and a transducer to get response and feedback fr...Miniature optical fiber sensors with thin films as sensitive elements could open new fields for optical fiber sensor applications. Thin films work as sensitive elements and a transducer to get response and feedback from environments, in which optical fibers act as a signal carrier. A novel Ag coated intensity modulated optical fiber sensor based on refractive index changes using IR and UV-Vis (UV-visible) light sources is proposed. The sensor with an IR light source has higher sensitivity compared to a UV-Vis source. When the refractive index is en- hanced to 1.38, the normalized intensity of IR and UV-Vis light diminishes to 0.2 and 0.8. respectively.展开更多
基金support from Universiti Teknologi Malaysia under Research University Grant Tier 1(Project No.Q.J130000.2546.12H25)Flagship UTMShine(Project No.Q.J130000.2446.03G29)Nippon Sheet Glass Foundation for Materials Science and Engineering under Overseas Research Grant Scheme(Project No.Q.J130000.2446.03G29)。
文摘Affordable hydrophobic hollow fibre membranes were prepared using kaolin and alumina based ceramic powders via a combined phase inversion and sintering technique,followed by a grafting with fluoroalkylsilane(FAS).The crux of the matter in this paper is to study the changes in the properties of the hollow fibre membranes(gas permeation,mechanical strength,pore size,porosity,tortuosity,morphology,and contact angle)by the addition of alumina(Al2O3)to the pure kaolin with mono or multiparticle sizes.By varying the overall loading and particle size of alumina addition,different morphologies of the membranes were obtained due to the differences in the path lengths during phase inversion process for each solvent and nonsolvent exchange.The successful grafting with FAS was evidenced by the increase in contact angle from nearly equal to zero degree before grafting to 140°after grafting.Kaolin-alumina-4,one of the hollow fibres fabricated in this work,achieved a mean pore size of 0.25μm with the bending strength of 96.4 MPa and high nitrogen permeance of 2.3×10^(-5) mol·m^(-2)·Pa^(-1)·s^(-1),which makes the hollow fibre most suitable for the membrane contactor application.
基金supported by the Universiti Teknologi Malaysia,AMTEC(No.R.J130000.7609.4C112)the Frontier Material Research Alliance
文摘Miniature optical fiber sensors with thin films as sensitive elements could open new fields for optical fiber sensor applications. Thin films work as sensitive elements and a transducer to get response and feedback from environments, in which optical fibers act as a signal carrier. A novel Ag coated intensity modulated optical fiber sensor based on refractive index changes using IR and UV-Vis (UV-visible) light sources is proposed. The sensor with an IR light source has higher sensitivity compared to a UV-Vis source. When the refractive index is en- hanced to 1.38, the normalized intensity of IR and UV-Vis light diminishes to 0.2 and 0.8. respectively.