Mode-locked microcombs with flat spectral profiles provide the high signal-to-noise ratio and are in high demand for wavelength division multiplexing(WDM)-based applications,particularly in future high-capacity commun...Mode-locked microcombs with flat spectral profiles provide the high signal-to-noise ratio and are in high demand for wavelength division multiplexing(WDM)-based applications,particularly in future high-capacity communication and parallel optical computing.Here,we present two solutions to generate local relatively flat spectral profiles.One microcavity with ultra-flat integrated dispersion is pumped to generate one relatively flat single soliton source spanning over 150 nm.Besides,one extraordinary soliton crystal with single vacancy demonstrates the local relatively flat microcomb lines when the inner soliton spacings are slightly irregular.Our work paves a new way for soliton-based applications owing to the relatively flat spectral characteristics.展开更多
We investigate frequency-comb generation in normal dispersion silicon microresonators from the near-infrared to mid-infrared wavelength range in the presence of multiphoton absorption and free-carrier effects. It is f...We investigate frequency-comb generation in normal dispersion silicon microresonators from the near-infrared to mid-infrared wavelength range in the presence of multiphoton absorption and free-carrier effects. It is found that parametric oscillation is inhibited in the telecom wavelength range resulting from strong two-photon absorption.On the contrary, beyond the wavelength of 2200 nm, where three-and four-photon absorption are less detrimental,a comb can be generated with moderate pump power, or free-carriers are swept out by a positive-intrinsic-negative structure. In the temporal domain, the generated combs correspond to flat-top pulses, and the pulse duration can be easily controlled by varying the laser detuning. The reported comb generation process shows a high conversion efficiency compared with anomalous dispersion regime, which can guide and promote comb formation in materials with normal dispersion. As the comb spectra cover the mid-infrared wavelength range, they can find applications in comb-based radiofrequency photonic filters and mid-infrared spectroscopy.展开更多
基金funding support from Dream X International Innovation Teamthe support from the startup grant from Nanyang Technological University (022527-00001)。
文摘Mode-locked microcombs with flat spectral profiles provide the high signal-to-noise ratio and are in high demand for wavelength division multiplexing(WDM)-based applications,particularly in future high-capacity communication and parallel optical computing.Here,we present two solutions to generate local relatively flat spectral profiles.One microcavity with ultra-flat integrated dispersion is pumped to generate one relatively flat single soliton source spanning over 150 nm.Besides,one extraordinary soliton crystal with single vacancy demonstrates the local relatively flat microcomb lines when the inner soliton spacings are slightly irregular.Our work paves a new way for soliton-based applications owing to the relatively flat spectral characteristics.
基金National Natural Science Foundation of China(NSFC)(61635013,61675231,61475188,61705257)Strategic Priority Research Program of the Chinese Academy of Sciences(CAS)(XDB24030600)
文摘We investigate frequency-comb generation in normal dispersion silicon microresonators from the near-infrared to mid-infrared wavelength range in the presence of multiphoton absorption and free-carrier effects. It is found that parametric oscillation is inhibited in the telecom wavelength range resulting from strong two-photon absorption.On the contrary, beyond the wavelength of 2200 nm, where three-and four-photon absorption are less detrimental,a comb can be generated with moderate pump power, or free-carriers are swept out by a positive-intrinsic-negative structure. In the temporal domain, the generated combs correspond to flat-top pulses, and the pulse duration can be easily controlled by varying the laser detuning. The reported comb generation process shows a high conversion efficiency compared with anomalous dispersion regime, which can guide and promote comb formation in materials with normal dispersion. As the comb spectra cover the mid-infrared wavelength range, they can find applications in comb-based radiofrequency photonic filters and mid-infrared spectroscopy.