In order to improve the reliability of the power system and provide uninterrupted power to the consumer, automatic reclosing (ARC) devices are often used in overhead power lines. On top of that, the condition of short...In order to improve the reliability of the power system and provide uninterrupted power to the consumer, automatic reclosing (ARC) devices are often used in overhead power lines. On top of that, the condition of short-circuit elimination or removal during ARC recloser depends on many random factors. In this article, the number of outages of 110 kV overhead lines in the Khangai region of Mongolia was studied, and the statistics of ARC device operation were compared with international standards. Also, from the works produced by scientists from foreign countries, the development level and innovative trends of ARC devices were compared and studied, and the opportunity to introduce them to Mongolia’s grid system was sought. Furthermore, the 110 kV transmission lines outage and the operation of the ARC devices installed in the Khangai region of Mongolia were studied. Hence, the average operation success rate of the ARC device in the last ten years was 76%. It was also found that the number of outages of 110 kV power lines is 8 per year on average, which is 2 - 3 times higher than the international norm. Eventually, the power grid scheme of the Khangai region, especially the Bulgan-Murun 110 kV distribution network, was modelled by Digsilent Powerfactory by including the features of Mongolia’s power transmission network, and the operation of the model was checked by the load flow function of the software.展开更多
文摘In order to improve the reliability of the power system and provide uninterrupted power to the consumer, automatic reclosing (ARC) devices are often used in overhead power lines. On top of that, the condition of short-circuit elimination or removal during ARC recloser depends on many random factors. In this article, the number of outages of 110 kV overhead lines in the Khangai region of Mongolia was studied, and the statistics of ARC device operation were compared with international standards. Also, from the works produced by scientists from foreign countries, the development level and innovative trends of ARC devices were compared and studied, and the opportunity to introduce them to Mongolia’s grid system was sought. Furthermore, the 110 kV transmission lines outage and the operation of the ARC devices installed in the Khangai region of Mongolia were studied. Hence, the average operation success rate of the ARC device in the last ten years was 76%. It was also found that the number of outages of 110 kV power lines is 8 per year on average, which is 2 - 3 times higher than the international norm. Eventually, the power grid scheme of the Khangai region, especially the Bulgan-Murun 110 kV distribution network, was modelled by Digsilent Powerfactory by including the features of Mongolia’s power transmission network, and the operation of the model was checked by the load flow function of the software.