Dielectric composites boost the family of energy storage and conversion materials as they can take full advantage of both the matrix and filler.This review aims at summarizing the recent progress in developing highper...Dielectric composites boost the family of energy storage and conversion materials as they can take full advantage of both the matrix and filler.This review aims at summarizing the recent progress in developing highperformance polymer-and ceramic-based dielectric composites,and emphases are placed on capacitive energy storage and harvesting,solid-state cooling,temperature stability,electromechanical energy interconversion,and high-power applications.Emerging fabrication techniques of dielectric composites such as 3D printing,electrospinning,and cold sintering are addressed,following by highlighted challenges and future research opportunities.The advantages and limitations of the typical theoretical calculation methods,such as finite-element,phase-field model,and machine learning methods,for designing high-performance dielectric composites are discussed.This review is concluded by providing a brief perspective on the future development of composite dielectrics toward energy and electronic devices.展开更多
Piezoelectric energy harvesters(PEHs)have attracted significant attention with the ability of converting mechanical energy into electrical energy and power the self-powered microelectronic components.Generally,materia...Piezoelectric energy harvesters(PEHs)have attracted significant attention with the ability of converting mechanical energy into electrical energy and power the self-powered microelectronic components.Generally,material's superior energy harvesting performance is closely related to its high transduction coefficient(d_(33)×g_(33)),which is dependent on higher piezoelectric coefficient d33 and lower dielectric constantεr of materials.However,the high d33 and lowεr are difficult to be simultaneously achieved in piezoelectric ceramics.Herein,lead zirconate titanate(PZT)based piezoelectric composites with vertically aligned microchannel structure are constructed by phase-inversion method.The polyvinylidene fluoride(PVDF)and carbon nanotubes(CNTs)are mixed as fillers to fabricate PZT/PVDF&CNTs composites.The unique structure and uniformly distributed CNTs network enhance the polarization and thus improve the d33.The PVDF filler effectively reduce theεr.As a consequence,the excellent piezoelectric coefficient(d_(33)=595 pC/N)and relatively low dielectric constant(ε_(r)=1,603)were obtained in PZT/PVDF&CNTs composites,which generated an ultra-high d_(33)×g_(33) of 24,942×10^(−15) m^(2)/N.Therefore,the PZT/PVDF&CNTs piezoelectric composites achieve excellent energy harvesting performance(output voltage:66 V,short current:39.22μA,and power density:1.25μW/mm^(2)).Our strategy effectively boosts the performance of piezoelectric-polymer composites,which has certain guiding significance for design of energy harvesters.展开更多
With the rapid development of space exploration and new energy vehicles,it is urgent to build ultra-wide temperature multilayer ceramic capacitors(UWT MLCCs)to match electronic circuits that can withstand harsh enviro...With the rapid development of space exploration and new energy vehicles,it is urgent to build ultra-wide temperature multilayer ceramic capacitors(UWT MLCCs)to match electronic circuits that can withstand harsh environmental conditions.Relaxor ferroelectrics with diffuse phase transition feature are potential dielectrics for the construction of UWT MLCCs.However,how to ensure high dielectric constant together with low dielectric loss in the wide temperature region is still a big challenge.Here,the above difficulties are addressed by tailoring the combination types of polar nanoregions(PNRs)in the(1-x)(0.8Na_(0.5)Bi_(0.5)TiO_(3)-0.2K_(0.5)Bi_(0.5)TiO_(3))-xNaTaO3(NBT-KBT-xNT)system.Compared with PNRS types of P4bm+R3c and P4bm+Pbnm,the combination type of P4bm+Pbnm+R3c PNRs in NBT-KBT-0.31NT is the most beneficial to obtain comprehensive excellent dielectric performance because it can balance the relationship between high dielectric constant and temperature stability over a wide temperature region.Further,by optimizing the laminating pressure and co-firing temperature to realize a tight interfacial structure between the dielectric layer and the Pt inner electrode,a record-high dielectric constant(er=(907%±15%))together with low dielectric loss(tan δ≤0.025)is achieved over an ultra-wide range from-61℃ to 306℃ for NBT-KBT-0.31 NT MLCC,demonstrating that tailoring the combination types of PNRs is a powerful strategy in designing UWT MLCC dielectrics.展开更多
Piezoelectric energy harvesters(PEHs)fabricated using piezoceramics could convert directly the mechanical vibration energy in the environment into electrical energy.The high piezoelectric charge coefficient(d_(33))and...Piezoelectric energy harvesters(PEHs)fabricated using piezoceramics could convert directly the mechanical vibration energy in the environment into electrical energy.The high piezoelectric charge coefficient(d_(33))and large piezoelectric voltage coefficient(g_(33))are key factors for the high-performance PEHs.However,high d_(33)and large g_(33)are difficult to simultaneously achieve with respect to g_(33)=d_(33)/(e_(0)e_(r))and d_(33)=2Qe_(0)e_(r)P_(r).Herein,the energy harvesting performance is optimized by tailoring the CaZrO_(3)content in(0.964−x)(K_(0.52)Na_(0.48))(Nb_(0.96)Sb_(0.04))O_(3)-0.036(Bi_(0.5)Na_(0.5))ZrO_(3)-xCaZrO_(3)ceramics.First,the doping CaZrO_(3)could enhance the dielectric relaxation due to the compositional fluctuation and structural disordering,and thus reduce the domain size to~30 nm for x=0.006 sample.The nanodomains switch easily to external electric field,resulting in large polarization.Second,the rhombohedral-orthorhombic-tetragonal phases coexist in x=0.006 sample,which reduces the polarization anisotropy and thus improves the piezoelectric properties.The multiphase coexistence structures and miniaturized domains contribute to the excellent piezoelectric properties of d_(33)(354 pC/N).Furthermore,the dielectric relative permittivity(ε_(r))reduces monotonously as the CaZrO_(3)content increases due to the relatively low ion polarizability of Ca^(2+)and Zr^(4+).As a result,the optimized energy conversion coefficient(d_(33)×g_(33),5508×10^(−15)m^(2)/N)is achieved for x=0.006 sample.Most importantly,the assembled PEH with the optimal specimen shows the excellent output power(~48 mW)and lights up 45 red commercial light-emitting diodes(LEDs).This work demonstrates that tailoring ferroelectric/relaxor behavior in(K,Na)NbO_(3)-based piezoelectric ceramics could effectively enhance the electrical output of PEHs.展开更多
Environmental and human health concerns about lead toxicity have prompted the development of lead-free piezoceramics.Among them,(Ba_(0.85)Ca_(0.15))(Zr_(0.1)Ti_(0.9))O_(3)(BCTZ)with excellent piezoelectric properties ...Environmental and human health concerns about lead toxicity have prompted the development of lead-free piezoceramics.Among them,(Ba_(0.85)Ca_(0.15))(Zr_(0.1)Ti_(0.9))O_(3)(BCTZ)with excellent piezoelectric properties has the most potential and attracts extensive attention.However,lack of concern toward electrical resistivity and mechanical properties has greatly hindered its practical application.Here,we report the achievement of enhanced insulation characteristics(grain electrical resistivity increased by one order of magnitude)and superior mechanical properties(Vickers hardness value increased by 40%)in Al_(2)O_(3)-added BCTZ composite ceramics.Such improvement can be attributed to specific composite microstructure,where the nonferroelectric second phase dispersed in the grain interior and grain boundary of BCTZ matrix results in blocking effect on the electric current paths as well as propagation of microcracks.These findings will pave a new way for the practical application of BCTZ ceramics.展开更多
基金supported by the State Key Lab of Advanced Metals and Materials(No.2020-Z16)the Fundamental Research Funds for the Central Universities(USTB:No.06500135)+3 种基金Huimin Qiao thanks the National Research Foundation of Korea(No.2019R1I1A1A01063888)for financial supportFangping Zhuo would like to thank the Alexander von Humboldt Foundation for financial supportThe computing work was supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome EngineeringProf.Q.Zhang also acknowledges the financial support from the Opening Project of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials,and Henan Key Laboratory of High-temperature Structural and Functional Materials,Henan University of Science and Technology(Grants No.HKDNM2019013).
文摘Dielectric composites boost the family of energy storage and conversion materials as they can take full advantage of both the matrix and filler.This review aims at summarizing the recent progress in developing highperformance polymer-and ceramic-based dielectric composites,and emphases are placed on capacitive energy storage and harvesting,solid-state cooling,temperature stability,electromechanical energy interconversion,and high-power applications.Emerging fabrication techniques of dielectric composites such as 3D printing,electrospinning,and cold sintering are addressed,following by highlighted challenges and future research opportunities.The advantages and limitations of the typical theoretical calculation methods,such as finite-element,phase-field model,and machine learning methods,for designing high-performance dielectric composites are discussed.This review is concluded by providing a brief perspective on the future development of composite dielectrics toward energy and electronic devices.
基金The work was supported by the National Natural Science Foundation of China(Grant No.52072150 and 51972146)Shandong Province Key Fundamental Research Program(Grant No.ZR2022ZD39)Beijing Natural Science Foundation(Grant No.JL23004).
文摘Piezoelectric energy harvesters(PEHs)have attracted significant attention with the ability of converting mechanical energy into electrical energy and power the self-powered microelectronic components.Generally,material's superior energy harvesting performance is closely related to its high transduction coefficient(d_(33)×g_(33)),which is dependent on higher piezoelectric coefficient d33 and lower dielectric constantεr of materials.However,the high d33 and lowεr are difficult to be simultaneously achieved in piezoelectric ceramics.Herein,lead zirconate titanate(PZT)based piezoelectric composites with vertically aligned microchannel structure are constructed by phase-inversion method.The polyvinylidene fluoride(PVDF)and carbon nanotubes(CNTs)are mixed as fillers to fabricate PZT/PVDF&CNTs composites.The unique structure and uniformly distributed CNTs network enhance the polarization and thus improve the d33.The PVDF filler effectively reduce theεr.As a consequence,the excellent piezoelectric coefficient(d_(33)=595 pC/N)and relatively low dielectric constant(ε_(r)=1,603)were obtained in PZT/PVDF&CNTs composites,which generated an ultra-high d_(33)×g_(33) of 24,942×10^(−15) m^(2)/N.Therefore,the PZT/PVDF&CNTs piezoelectric composites achieve excellent energy harvesting performance(output voltage:66 V,short current:39.22μA,and power density:1.25μW/mm^(2)).Our strategy effectively boosts the performance of piezoelectric-polymer composites,which has certain guiding significance for design of energy harvesters.
基金This work was supported by National Natural Science Foundation of China(Grant No.52272103 and 52072010),and Beijing Natural Science Foundation(Grant No.JL23004).
文摘With the rapid development of space exploration and new energy vehicles,it is urgent to build ultra-wide temperature multilayer ceramic capacitors(UWT MLCCs)to match electronic circuits that can withstand harsh environmental conditions.Relaxor ferroelectrics with diffuse phase transition feature are potential dielectrics for the construction of UWT MLCCs.However,how to ensure high dielectric constant together with low dielectric loss in the wide temperature region is still a big challenge.Here,the above difficulties are addressed by tailoring the combination types of polar nanoregions(PNRs)in the(1-x)(0.8Na_(0.5)Bi_(0.5)TiO_(3)-0.2K_(0.5)Bi_(0.5)TiO_(3))-xNaTaO3(NBT-KBT-xNT)system.Compared with PNRS types of P4bm+R3c and P4bm+Pbnm,the combination type of P4bm+Pbnm+R3c PNRs in NBT-KBT-0.31NT is the most beneficial to obtain comprehensive excellent dielectric performance because it can balance the relationship between high dielectric constant and temperature stability over a wide temperature region.Further,by optimizing the laminating pressure and co-firing temperature to realize a tight interfacial structure between the dielectric layer and the Pt inner electrode,a record-high dielectric constant(er=(907%±15%))together with low dielectric loss(tan δ≤0.025)is achieved over an ultra-wide range from-61℃ to 306℃ for NBT-KBT-0.31 NT MLCC,demonstrating that tailoring the combination types of PNRs is a powerful strategy in designing UWT MLCC dielectrics.
基金This work was supported by the National Natural Science Foundation of China(Nos.52072150 and 51972146)the China Association for Science and Technology(Young Elite Scientists Sponsorship Program)the State Key Laboratory of New Ceramics and Fine Processing Tsinghua University(No.KF202002).
文摘Piezoelectric energy harvesters(PEHs)fabricated using piezoceramics could convert directly the mechanical vibration energy in the environment into electrical energy.The high piezoelectric charge coefficient(d_(33))and large piezoelectric voltage coefficient(g_(33))are key factors for the high-performance PEHs.However,high d_(33)and large g_(33)are difficult to simultaneously achieve with respect to g_(33)=d_(33)/(e_(0)e_(r))and d_(33)=2Qe_(0)e_(r)P_(r).Herein,the energy harvesting performance is optimized by tailoring the CaZrO_(3)content in(0.964−x)(K_(0.52)Na_(0.48))(Nb_(0.96)Sb_(0.04))O_(3)-0.036(Bi_(0.5)Na_(0.5))ZrO_(3)-xCaZrO_(3)ceramics.First,the doping CaZrO_(3)could enhance the dielectric relaxation due to the compositional fluctuation and structural disordering,and thus reduce the domain size to~30 nm for x=0.006 sample.The nanodomains switch easily to external electric field,resulting in large polarization.Second,the rhombohedral-orthorhombic-tetragonal phases coexist in x=0.006 sample,which reduces the polarization anisotropy and thus improves the piezoelectric properties.The multiphase coexistence structures and miniaturized domains contribute to the excellent piezoelectric properties of d_(33)(354 pC/N).Furthermore,the dielectric relative permittivity(ε_(r))reduces monotonously as the CaZrO_(3)content increases due to the relatively low ion polarizability of Ca^(2+)and Zr^(4+).As a result,the optimized energy conversion coefficient(d_(33)×g_(33),5508×10^(−15)m^(2)/N)is achieved for x=0.006 sample.Most importantly,the assembled PEH with the optimal specimen shows the excellent output power(~48 mW)and lights up 45 red commercial light-emitting diodes(LEDs).This work demonstrates that tailoring ferroelectric/relaxor behavior in(K,Na)NbO_(3)-based piezoelectric ceramics could effectively enhance the electrical output of PEHs.
基金supported by National Natural Science Foundation of China(Grant Nos.51677001,51602012)Beijing Natural Science Foundation(Grant No.2192009)the Fundamental Research Funds for the Beijing Municipal Universities(PXM2019-014204-500031,PXM2019-014204-500032).
文摘Environmental and human health concerns about lead toxicity have prompted the development of lead-free piezoceramics.Among them,(Ba_(0.85)Ca_(0.15))(Zr_(0.1)Ti_(0.9))O_(3)(BCTZ)with excellent piezoelectric properties has the most potential and attracts extensive attention.However,lack of concern toward electrical resistivity and mechanical properties has greatly hindered its practical application.Here,we report the achievement of enhanced insulation characteristics(grain electrical resistivity increased by one order of magnitude)and superior mechanical properties(Vickers hardness value increased by 40%)in Al_(2)O_(3)-added BCTZ composite ceramics.Such improvement can be attributed to specific composite microstructure,where the nonferroelectric second phase dispersed in the grain interior and grain boundary of BCTZ matrix results in blocking effect on the electric current paths as well as propagation of microcracks.These findings will pave a new way for the practical application of BCTZ ceramics.