期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
压力浸渗法制备Si_3N_(4p)/2024Al复合材料的时效和热膨胀行为(英文) 被引量:2
1
作者 陈国钦 杨文澍 +3 位作者 马康 murid hussain 姜龙涛 武高辉 《中国有色金属学会会刊:英文版》 CSCD 2011年第S2期262-273,共12页
采用压力浸渗法制备Si3N4p/2024Al复合材料,并研究其时效和热膨胀行为。2024铝合金和Si3N4p/2024Al复合材料的峰时效时间及硬度均随着时效温度的升高而降低。激活能计算结果表明,在Si3N4p/2024Al复合材料中s′相析出比在2024铝合金中容... 采用压力浸渗法制备Si3N4p/2024Al复合材料,并研究其时效和热膨胀行为。2024铝合金和Si3N4p/2024Al复合材料的峰时效时间及硬度均随着时效温度的升高而降低。激活能计算结果表明,在Si3N4p/2024Al复合材料中s′相析出比在2024铝合金中容易。Si3N4的加入,未改变析出相的析出顺序,但是加速了析出。在低于100℃时,Si3N4p/2024Al复合材料的热膨胀系数接近Kerner模型(即Schapery模型的上限)和Schapery模型的下限的平均值。由于低的内应力、弥散分布的Al2MgCu析出相对位错的强钉扎作用以及高密度缠绕的位错,时效处理后的Si3N4p/2024Al复合材料具有最好的尺寸稳定性。由于具有良好的力学性能和钢匹配的热膨胀数系以及优异的尺寸稳定性,Si3N4p/2024Al复合材料在惯性导航领域具有广阔的应用前景。 展开更多
关键词 SI3N4 铝基复合材料 时效 热膨胀
下载PDF
Research progress on the characterization and repair of graphene defects 被引量:4
2
作者 Bo-yu Ju Wen-shu Yang +4 位作者 Qiang Zhang murid hussain Zi-yang Xiu Jing Qiao Gao-hui Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第9期1179-1190,共12页
Graphene has excellent theoretical properties and a wide range of applications in metal-based composites. However, because of defects on the graphene surface, the actual performance of the material is far below theore... Graphene has excellent theoretical properties and a wide range of applications in metal-based composites. However, because of defects on the graphene surface, the actual performance of the material is far below theoretical expectations. In addition, graphene containing defects could easily react with a matrix alloy, such as Al, to generate brittle and hydrolyzed phases that could further reduce the performance of the resulting composite. Therefore, defect repair is an important area of graphene research. The repair methods reported in the present paper include chemical vapor deposition, doping, liquid-phase repair, external energy graphitization, and alloying. Detailed analyses and comparisons of these methods are carried out, and the characterization methods of graphene are introduced. The mechanism, research value, and future outlook of graphene repair are also discussed at length. Graphene defect repair mainly relies on the spontaneous movement of C atoms or heteroatoms to the pore defects under the condition of applied energy. The repair degree and mechanism of graphene repair are also different according to different preparations. The current research on graphene defect repair is still in its infancy, and it is believed that the problem of defect evolution will be explained in more depth in the future. 展开更多
关键词 GRAPHENE metal matrix composites defect repair CHARACTERIZATION repair mechanism
下载PDF
Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling 被引量:3
3
作者 Ping-ping Wang Guo-qin Chen +5 位作者 Wen-jun Li Hui Li Bo-yu Ju murid hussain Wen-shu Yang Gao-hui Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第11期1821-1827,共7页
The microstructural evolution and performance of diamond/Al composites during thermal cycling has rarely been investigated.In the present work,the thermal stability of diamond/Al composites during thermal cycling for ... The microstructural evolution and performance of diamond/Al composites during thermal cycling has rarely been investigated.In the present work,the thermal stability of diamond/Al composites during thermal cycling for up to 200 cycles was explored.Specifically,the thermal conductivity(λ)of the composites was measured and scanning electron microscopy of specific areas in the same samples was carried out to achieve quasi-in situ observations.The interface between the(100)plane of diamond and the Al matrix was well bonded with a zigzag morphology and abundant needle-like Al4C3 phases.By contrast,the interface between the(111)plane of diamond and the Al matrix showed weak bonding and debonded during thermal cycling.The debonding length increased rapidly over the first 100 thermal cycles and then increased slowly in the following 100 cycles.Theλof the diamond/Al composites decreased abruptly over the initial 20 cycles,increased afterward,and then decreased monotonously once more with increasing number of thermal cycles.Decreases in theλof the Al matrix and the corresponding stress concentration at the diamond/Al interface caused by thermal mismatch,rather than interfacial debonding,may be the main factors influencing the decrease inλof the diamond/Al composites,especially in the initial stages of thermal cycling. 展开更多
关键词 metal-matrix composites DIAMOND STABILITY thermal mismatch stress
下载PDF
Formation of crystalline particles from phase change emulsion: Influence of different parameters 被引量:1
4
作者 Javed Iqbal Zulfiqar Ali +4 位作者 murid hussain Rizwan Sheikh Khaliq Majeed Asad Ullah Khan Joachim Ulrich 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第7期929-936,共8页
Solidification or crystallization of phase change emulsion in the form of fine emulsion drops in a direct contact coolant at temperatures below their freezing point was studied. This work is mainly focused on the size... Solidification or crystallization of phase change emulsion in the form of fine emulsion drops in a direct contact coolant at temperatures below their freezing point was studied. This work is mainly focused on the size and shape of the generated particles from phase change emulsified fats. Size of the particles is the major or key factor being considered during their formation, however, other factors that govern the particle size and shape were also observed. The operating parameters of the process were optimized in order to obtain particles of smaller size ranges in the window of current operating conditions. The crystallization of complex emulsion matrices is very difficult to control in the bulk at desired requirement. Hence, the emulsion drop to particle formation has advantage in comparison with the bulk solidification or crystallization. The main objective of this work is to achieve spherical emulsion particles in a direct contact cooling system. Parameters like: stability, characterization, viscosity, and the effect of different energy inputs were examined. Moreover, the effects of the capillary size, interfacial tension, temperature of the emulsion on the particle size were also monitored. 展开更多
关键词 结晶颗粒 复合乳液 物相变化 直接接触 颗粒大小 操作参数 操作条件 冷却系统
下载PDF
Deformation treatment and microstructure of graphene-reinforced metal matrix nanocomposites: A review of graphene post-dispersion 被引量:1
5
作者 Yong Mei Pu-zhen Shao +8 位作者 Ming Sun Guo-qin Chen murid hussain Feng-lei Huang Qiang Zhang Xiao-sa Gao Yin-yin Pei Su-juan Zhong Gao-hui Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第7期888-899,共12页
Graphene/aluminum(Gr/Al)composites have attracted the attention of researchers all over the world due to their excellent properties.However,graphene agglomerates easily because of the van der Waals force between graph... Graphene/aluminum(Gr/Al)composites have attracted the attention of researchers all over the world due to their excellent properties.However,graphene agglomerates easily because of the van der Waals force between graphite sheets,thereby affecting the performance of the composites.Decreasing the agglomeration of graphene and dispersing it uniformly in the Al matrix is a key challenge.In the preparation process,predispersion treatment and deformation treatment can play important roles in graphene dispersion.Researchers have conducted a series of research and literature reviews of the graphene predispersion and consolidation of composites.However,they paid less attention to post-deformation processing.This review summarizes different deformation treatments involved in the preparation process of Gr/Al composites and the evolution of the microstructure during the process.Research on deformation parameters is expected to further improve the properties of Gr/Al composites and would provide a deep understanding of the strengthening effect of graphene. 展开更多
关键词 graphene/aluminum composites deformation treatment DISPERSION MICROSTRUCTURE
下载PDF
Microstructure and Mechanical Properties of 45 vol.%SiC_p/7075Al Composite 被引量:7
6
作者 Ziyang Xiu Wenshu Yang +4 位作者 Ronghua Dong murid hussain Longtao Jiang YongXing Liu Gaohui Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第9期930-934,共5页
Microstructure and mechanical behavior of high volume content SiCp/7xxxAl composites have not been explored yet. Therefore, in the present work, 45 vol.% SiCp/7075Al composite has been prepared by pres- sure infiltrat... Microstructure and mechanical behavior of high volume content SiCp/7xxxAl composites have not been explored yet. Therefore, in the present work, 45 vol.% SiCp/7075Al composite has been prepared by pres- sure infiltration method. High density dislocations were found around SiC/Al interface in SiCp/7075Al composite after water-quenching and aging treatment. Fine dispersed nano-η' phases were observed after the aging treatment. Adverse to other SiCp/Al composites prepared by the pressure infiltration method, an interface layer was observed between SiC particles and AI matrix. Furthermore, high-resolution trans- mission electron microscopy (HRTEM) observation indicated that this interface layer was coherent/semi- coherent with that of the SiC particles. 45 vol.% SiCp/7075Al composite demonstrated high tensile strength (630 MPa) and micro-ductility. Compared to aged SiCp/2024Al composite, the aged SiCp/7075Al com- posite showed an increase of about 200% in the tensile strain and 90% in the tensile strength, respectively. It is speculated that nano-η' phases in the Al matrix significantly contributed to the strengthening effect while the interface layer between SiC and AI matrix might be beneficial to the strength and plasticity of SiCp/7075Al composite. 展开更多
关键词 Metal matrix composite7075Al InterfaceNano precipitationMechanical properties
原文传递
Electrical Discharge Machining of Al2024-65 vol%SiC Composites 被引量:1
7
作者 Wen-Shu Yang Guo-Qin Chen +4 位作者 Ping Wu murid hussain Jia-Bing Song Rong-Hua Dong Gao-Hui Wu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第5期447-455,共9页
In the present work, the wire electrical discharge machining(WEDM) process of the 65 vol% SiCp/2024 Al composite prepared by pressure infiltration methods has been investigated. The microstructure of the machined co... In the present work, the wire electrical discharge machining(WEDM) process of the 65 vol% SiCp/2024 Al composite prepared by pressure infiltration methods has been investigated. The microstructure of the machined composite was characterized by scanning electron microscope, the average surface roughness(Ra), X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy(TEM) techniques. Three zones from the surface to the interior(melting zone, heat affected zone and un-affected zone) were found in the machined composites, while the face of SiC particles on the surface toward the outside was ‘‘cut'' to be flat. Increase in Al and Si but decrease in C and O were observed in the core areas of the removed particles. Si phase, which was generated due to the decomposition of SiC, was detected after the WEDM process. The irregular and spherical particles were further observed by TEM. Based on the microstructure observation, it is suggested that the machining mechanism of 65 vol% SiCp/2024 Al composite was the combination of the melting of Al matrix and the decomposition of SiC particles. 展开更多
关键词 Metal matrix composites SiCp/Al composite Metal infiltration Wire electrical discharge machining(WEDM) SiC decomposition Machining mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部