期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Using Artificial Neural Network to Predict Body Weights of Rabbits
1
作者 Emmanuel O. Salawu musa abdulraheem +4 位作者 Ayoola Shoyombo Ayo Adepeju Sunday Davies Oludayo Akinsola Barthlomew Nwagu 《Open Journal of Animal Sciences》 2014年第4期182-186,共5页
In this (modest) study, we developed artificial neural network (ANN) models for predicting body weight using various independent (input) variables in eight-week old New Zealand white purebred and crossbred rabbits. Fr... In this (modest) study, we developed artificial neural network (ANN) models for predicting body weight using various independent (input) variables in eight-week old New Zealand white purebred and crossbred rabbits. From the whole data sets of similar age groups, 75 percent were used to train the neural network model and 25 percent were used to test the effectiveness of the model. Five predictor variables were used viz, breed, sex, heart girth, body length and height at wither as input variables and body weight was considered as dependent variable from the model. The ANN used was multilayer feed forward network with back propagation of error for efficient learning. Our ANN models (with R2 = 0.68 at ten thousand iterations, and R2 = 0.71 one million iterations) performed better than traditional multivariate linear regression (MLR) models (R2 = 0.66) indicating that the ANN models were able to more accurately capture how the variations in input variables explained the variations in body weight. It is concluded that ANN models are more powerful than MLR models in predicting animals’ body weight. Nonetheless, we recognize that fitting an ANN model requires more computation resources than fitting a tradition MLR model but the benefits of its accuracy outweigh any demerit from the associated computation overhead. 展开更多
关键词 Artificial NEURAL Network New Zealand RABBITS MULTIVARIATE LINEAR Regression
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部