In this paper, the flexural behavior of laterally loaded tapered piles in cohesive soils is investigated. The exact solution for the governing differential equation of the problem is obtained based on the beam-on-elas...In this paper, the flexural behavior of laterally loaded tapered piles in cohesive soils is investigated. The exact solution for the governing differential equation of the problem is obtained based on the beam-on-elastic foundation approach in which the soil reaction on the pile is related directly to the pile lateral deflection. In this investigation, the modulus of subgrade reactions is assumed to be constant along the pile depth. Parametric study through numerical examples is carried out to prove the validity and accuracy of the obtained results. In general, the derived displacement field can be used to study pile response in multilayered soil profiles by subdividing the pile into a number of elements. It is found that tapered piles show stiffer behavior than that for prismatic ones having the same material volume with an optimum stress distribution along the pile depth. Accordingly, tapered piles are more efficient and economic than those having the same material volume. Verification is also carried out for the obtained results through finite element analysis and the selected number of elements gives a very good agreement for lateral deflection and a larger number of elements is required to obtain better results for bending moment because of moment loss resulting from the lack of shear diagram.展开更多
Transverse opening in a beam has a reducing effect of the beam stiffness which will cause a significant increase in beam deflection in the region on the opening. In this paper, a new stiffness matrix for a beam elemen...Transverse opening in a beam has a reducing effect of the beam stiffness which will cause a significant increase in beam deflection in the region on the opening. In this paper, a new stiffness matrix for a beam element with transverse opening including the effect of shear deformation has been derived. The strain energy principle is used in the derivation process of the stiffness matrix and the fixed-end force vector for the case of a concentrated or a uniformly distributed load is also derived. The accuracy of the obtained results based on the derived stiffness matrix is examined through comparison with that of the finite element method using Abaqus package and a previous study which show a good agreement with high accuracy.展开更多
文摘In this paper, the flexural behavior of laterally loaded tapered piles in cohesive soils is investigated. The exact solution for the governing differential equation of the problem is obtained based on the beam-on-elastic foundation approach in which the soil reaction on the pile is related directly to the pile lateral deflection. In this investigation, the modulus of subgrade reactions is assumed to be constant along the pile depth. Parametric study through numerical examples is carried out to prove the validity and accuracy of the obtained results. In general, the derived displacement field can be used to study pile response in multilayered soil profiles by subdividing the pile into a number of elements. It is found that tapered piles show stiffer behavior than that for prismatic ones having the same material volume with an optimum stress distribution along the pile depth. Accordingly, tapered piles are more efficient and economic than those having the same material volume. Verification is also carried out for the obtained results through finite element analysis and the selected number of elements gives a very good agreement for lateral deflection and a larger number of elements is required to obtain better results for bending moment because of moment loss resulting from the lack of shear diagram.
文摘Transverse opening in a beam has a reducing effect of the beam stiffness which will cause a significant increase in beam deflection in the region on the opening. In this paper, a new stiffness matrix for a beam element with transverse opening including the effect of shear deformation has been derived. The strain energy principle is used in the derivation process of the stiffness matrix and the fixed-end force vector for the case of a concentrated or a uniformly distributed load is also derived. The accuracy of the obtained results based on the derived stiffness matrix is examined through comparison with that of the finite element method using Abaqus package and a previous study which show a good agreement with high accuracy.