期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparison of Numerical Approximations of One-Dimensional Space Fractional Diffusion Equation Using Different Types of Collocation Points in Spectral Method Based on Lagrange’s Basis Polynomials 被引量:1
1
作者 mushfika hossain nova Hasib Uddin Molla Sajeda Banu 《American Journal of Computational Mathematics》 2017年第4期469-480,共12页
Recently many research works have been conducted and published regarding fractional order differential equations. There are several approaches available for numerical approximations of the solution of fractional order... Recently many research works have been conducted and published regarding fractional order differential equations. There are several approaches available for numerical approximations of the solution of fractional order diffusion equations. Spectral collocation method based on Lagrange’s basis polynomials to approximate numerical solutions of one-dimensional (1D) space fractional diffusion equations are introduced in this research paper. The proposed form of approximate solution satisfies non-zero Dirichlet’s boundary conditions on both boundaries. Collocation scheme produce a system of first order Ordinary Differential Equations (ODE) from the fractional diffusion equation. We applied this method with four different sets of collocation points to compare their performance. 展开更多
关键词 Fractional Diffusion Equation Spectral METHOD COLLOCATION METHOD Lagrange’s BASIS Polynomial
下载PDF
Lagrange’s Spectral Collocation Method for Numerical Approximations of Two-Dimensional Space Fractional Diffusion Equation
2
作者 Hasib Uddin Molla mushfika hossain nova 《American Journal of Computational Mathematics》 2018年第2期121-136,共16页
Due to the ability to model various complex phenomena where classical calculus failed, fractional calculus is getting enormous attention recently. There are several approaches available for numerical approximations of... Due to the ability to model various complex phenomena where classical calculus failed, fractional calculus is getting enormous attention recently. There are several approaches available for numerical approximations of various types of fractional differential equations. For fractional diffusion equations spectral collocation is one of the efficient and most popular ap-proximation techniques. In this research, we introduce spectral collocation method based on Lagrange’s basis polynomials for numerical approximations of two-dimensional (2D) space fractional diffusion equations where spatial fractional derivative is described in Riemann-Liouville sense. We consider four different types of nodes to generate Lagrange’s basis polynomials and as collocation points in the proposed spectral collocation technique. Spectral collocation method converts the diffusion equation into a system of ordinary differential equations (ODE) for time variable and we use 4th order Runge-Kutta method to solve the resulting system of ODE. Two examples are considered to verify the efficiency of different types of nodes in the proposed method. We compare approximated solution with exact solution and find that Lagrange’s spectral collocation method gives very high accuracy approximation. Among the four types of nodes, nodes from Jacobi polynomial give highest accuracy and nodes from Chebyshev polynomials of 1st kind give lowest accuracy in the proposed method. 展开更多
关键词 Lagrange’s SPECTRAL METHOD 2D FRACTIONAL Diffusion EQUATION COLLOCATION METHOD
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部