Nanostructured Y203 was successfully prepared via a two-step and template-free method. Firstly, yttrium hydroxide precursor was galvanostatically grown on the steel substrate from chloride bath by direct and pulse cur...Nanostructured Y203 was successfully prepared via a two-step and template-free method. Firstly, yttrium hydroxide precursor was galvanostatically grown on the steel substrate from chloride bath by direct and pulse current deposition modes. Direct cunent deposition was carried out at the constant current density of 0.1 A/dm2 for 600 s. The pulse current was also performed at a typical on-time and off-time (ton=l S and Germ s) with an average current density of 0.05 A/dm2 (la=0.05 A/din2) for 600 s. The obtained hydroxide films were then scraped from the substrates and thermally converted into final oxide product via heat-treatment. Thermal behaviors and phase transformations during the heat treatment of the hydroxide powder samples were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The final oxide products were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results showed that the well-crystallized Y203 with brainand sphere-like morphology were achievable via pulse and direct deposition modes, respectively. It was concluded that pulse current cathodic electrodeposition offered a facile route for preparation ofnanostructured Y203.展开更多
Ultrafine Y(OH)3 nanoparticles were successfully deposited from an additive-free 0.005 mol/L YCl3 low-temperature bath on the steel cathode at the current density of 0.5 mA/cm2 and bath temperature of 10 oC. Heat tr...Ultrafine Y(OH)3 nanoparticles were successfully deposited from an additive-free 0.005 mol/L YCl3 low-temperature bath on the steel cathode at the current density of 0.5 mA/cm2 and bath temperature of 10 oC. Heat treatment of the prepared Y(OH)3 nanoparticles at 600 oC in air led to the formation of Y2O3 nanoparticles. Thermal behavior and phase transformation during the heat treatment of Y(OH)3 were investigated by differential scanning calorimetry (DSC) and thermogramimetric analysis (TGA). The morphologies, crystal structures and compositions of the prepared materials were examined by means of scanning and transmission electron microscopy (SEM and TEM) as well as X-ray diffraction (XRD) and FT-IR spectroscopy. The results showed that the prepared Y(OH)3 nanoparticles was essentially amorphous and composed of well dispersed ultrafine particles with size of 4 nm. After heat treatment, the obtained oxide product was well crystallized cubic phase of Y2O3 nanoparticles with the grain size of around 5 nm. It was concluded that low-temperature cathodic electrodeposition offered a facile and feasible way for preparation of ultrafine Y(OH)3 and Y2O3 nanoparticles.展开更多
文摘Nanostructured Y203 was successfully prepared via a two-step and template-free method. Firstly, yttrium hydroxide precursor was galvanostatically grown on the steel substrate from chloride bath by direct and pulse current deposition modes. Direct cunent deposition was carried out at the constant current density of 0.1 A/dm2 for 600 s. The pulse current was also performed at a typical on-time and off-time (ton=l S and Germ s) with an average current density of 0.05 A/dm2 (la=0.05 A/din2) for 600 s. The obtained hydroxide films were then scraped from the substrates and thermally converted into final oxide product via heat-treatment. Thermal behaviors and phase transformations during the heat treatment of the hydroxide powder samples were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The final oxide products were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results showed that the well-crystallized Y203 with brainand sphere-like morphology were achievable via pulse and direct deposition modes, respectively. It was concluded that pulse current cathodic electrodeposition offered a facile route for preparation ofnanostructured Y203.
文摘Ultrafine Y(OH)3 nanoparticles were successfully deposited from an additive-free 0.005 mol/L YCl3 low-temperature bath on the steel cathode at the current density of 0.5 mA/cm2 and bath temperature of 10 oC. Heat treatment of the prepared Y(OH)3 nanoparticles at 600 oC in air led to the formation of Y2O3 nanoparticles. Thermal behavior and phase transformation during the heat treatment of Y(OH)3 were investigated by differential scanning calorimetry (DSC) and thermogramimetric analysis (TGA). The morphologies, crystal structures and compositions of the prepared materials were examined by means of scanning and transmission electron microscopy (SEM and TEM) as well as X-ray diffraction (XRD) and FT-IR spectroscopy. The results showed that the prepared Y(OH)3 nanoparticles was essentially amorphous and composed of well dispersed ultrafine particles with size of 4 nm. After heat treatment, the obtained oxide product was well crystallized cubic phase of Y2O3 nanoparticles with the grain size of around 5 nm. It was concluded that low-temperature cathodic electrodeposition offered a facile and feasible way for preparation of ultrafine Y(OH)3 and Y2O3 nanoparticles.