The infiltration with atmospheric pressure of Dense Non Aqueous Phase Liquid (DNAPL) in a model of porous medium saturated by another liquid is studied when this DNAPL liquid has a contact angle characterizing wetting...The infiltration with atmospheric pressure of Dense Non Aqueous Phase Liquid (DNAPL) in a model of porous medium saturated by another liquid is studied when this DNAPL liquid has a contact angle characterizing wetting liquid. The model of the porous medium considered consists of an assembly of solid particles for various forms. The influence of the shape of the particles is studied. The results found show the retention capacity of such porous media in function of the shape of the solid particles.展开更多
Geometric inversion is applied to two-dimensional Stokes flow in view to find new Stokes flow solutions. The principle of this method and the relations between the reference and inverse fluid velocity fields are prese...Geometric inversion is applied to two-dimensional Stokes flow in view to find new Stokes flow solutions. The principle of this method and the relations between the reference and inverse fluid velocity fields are presented. They are followed by applications to the flow between two parallel plates induced by a rotating or a translating cylinder. Thus hydrodynamic characteristics of flow around circular bodies obtained by inversion of the plates are thus deduced. Typically fluid flow patterns around two circular cylinders in contact placed in the centre of a rotating or a translating circular cylinder are illustrated.展开更多
文摘The infiltration with atmospheric pressure of Dense Non Aqueous Phase Liquid (DNAPL) in a model of porous medium saturated by another liquid is studied when this DNAPL liquid has a contact angle characterizing wetting liquid. The model of the porous medium considered consists of an assembly of solid particles for various forms. The influence of the shape of the particles is studied. The results found show the retention capacity of such porous media in function of the shape of the solid particles.
文摘Geometric inversion is applied to two-dimensional Stokes flow in view to find new Stokes flow solutions. The principle of this method and the relations between the reference and inverse fluid velocity fields are presented. They are followed by applications to the flow between two parallel plates induced by a rotating or a translating cylinder. Thus hydrodynamic characteristics of flow around circular bodies obtained by inversion of the plates are thus deduced. Typically fluid flow patterns around two circular cylinders in contact placed in the centre of a rotating or a translating circular cylinder are illustrated.