<div style="text-align:justify;"> Herein we have originally designed chiral azo-salen Mn(II) and Zn(II) complexes for interacting silver nanoparticles (AgNPs) exhibiting localized surface plasmon reson...<div style="text-align:justify;"> Herein we have originally designed chiral azo-salen Mn(II) and Zn(II) complexes for interacting silver nanoparticles (AgNPs) exhibiting localized surface plasmon resonance (LSPR). Understanding excited state and reaction intermediate during light irradiation to return to ground state may be important for such composite systems. Therefore, we investigated such optical properties for systems using time-resolved luminescence and transient absorption measurements. DMSO solutions of the four newly prepared and characterized complexes (<strong>MMn</strong><strong>, MZn, CMn,</strong> and <strong>CZn</strong>) and ethanol solutions of the composite materials of each complex with AgNPs were served for optical measurements. The time-correlated single photon counting (TCSPC), the streak camera which is much shorter period of time than TCSPC and transient absorption measurement, was performed for the eight samples. The fluorescence lifetime of the sole complexes and the composite materials with AgNPs was derived from curve-fitting analysis of luminescence decay curves of TCSPC. Lifetime of the composite systems with AgNPs was longer than that of the corresponding sole metal complexes for three cases. It was revealed that composite systems may go through three reaction intermediates during relaxation from excited state to ground state. </div>展开更多
The authors have designed and synthesized new chiral salen-type metal (M = Fe, Co, Ni, Cu, Zn) complexes (1-5) for new conceptual dyes (co-sensitizer or colorful multi-dyes) of DSSCs (dye-sensitized solar cells...The authors have designed and synthesized new chiral salen-type metal (M = Fe, Co, Ni, Cu, Zn) complexes (1-5) for new conceptual dyes (co-sensitizer or colorful multi-dyes) of DSSCs (dye-sensitized solar cells). The authors measured substituent effects on their absorption spectra and redox properties, and compared them with TD-DFT (time-dependent density functional theory) calculations. Electron withdrawing groups resulted in red-shift of ultraviolet-visible (UV-Vis) spectra. For the first time, the authors also proposed and confirmed the importance of substituent effects on their electric transition dipole moments, calculated by TD-DFT for designing dyes. Chemisorption for TiO2 of the complex by carboxyl groups was confirmed by XPS measurement. In view of electronic properties, all compounds have the possibility to be dyes of DSSCs.展开更多
The post-deposition heat treatment (annealing) for the electrochemically deposited thin film is often necessary in order to improve its crystallinity. In the present study, the electrochemically deposited indium sulfi...The post-deposition heat treatment (annealing) for the electrochemically deposited thin film is often necessary in order to improve its crystallinity. In the present study, the electrochemically deposited indium sulfide oxide thin film was annealed in sulphure atmosphere for 60 min at 150℃ and 300℃. The impact of the annealing process on the composition, crystal structure, and surface morphology of the thin film was investigated. In addition, superstrate heterojunction solar cells based on the annealed film as a buffer layer and tin sulphide as an active layer were fabricated and characterized. They showed diode-like behavior under dark condition and a relatively small photovoltaic effect under AM1.5 illumination condition.展开更多
文摘<div style="text-align:justify;"> Herein we have originally designed chiral azo-salen Mn(II) and Zn(II) complexes for interacting silver nanoparticles (AgNPs) exhibiting localized surface plasmon resonance (LSPR). Understanding excited state and reaction intermediate during light irradiation to return to ground state may be important for such composite systems. Therefore, we investigated such optical properties for systems using time-resolved luminescence and transient absorption measurements. DMSO solutions of the four newly prepared and characterized complexes (<strong>MMn</strong><strong>, MZn, CMn,</strong> and <strong>CZn</strong>) and ethanol solutions of the composite materials of each complex with AgNPs were served for optical measurements. The time-correlated single photon counting (TCSPC), the streak camera which is much shorter period of time than TCSPC and transient absorption measurement, was performed for the eight samples. The fluorescence lifetime of the sole complexes and the composite materials with AgNPs was derived from curve-fitting analysis of luminescence decay curves of TCSPC. Lifetime of the composite systems with AgNPs was longer than that of the corresponding sole metal complexes for three cases. It was revealed that composite systems may go through three reaction intermediates during relaxation from excited state to ground state. </div>
文摘The authors have designed and synthesized new chiral salen-type metal (M = Fe, Co, Ni, Cu, Zn) complexes (1-5) for new conceptual dyes (co-sensitizer or colorful multi-dyes) of DSSCs (dye-sensitized solar cells). The authors measured substituent effects on their absorption spectra and redox properties, and compared them with TD-DFT (time-dependent density functional theory) calculations. Electron withdrawing groups resulted in red-shift of ultraviolet-visible (UV-Vis) spectra. For the first time, the authors also proposed and confirmed the importance of substituent effects on their electric transition dipole moments, calculated by TD-DFT for designing dyes. Chemisorption for TiO2 of the complex by carboxyl groups was confirmed by XPS measurement. In view of electronic properties, all compounds have the possibility to be dyes of DSSCs.
文摘The post-deposition heat treatment (annealing) for the electrochemically deposited thin film is often necessary in order to improve its crystallinity. In the present study, the electrochemically deposited indium sulfide oxide thin film was annealed in sulphure atmosphere for 60 min at 150℃ and 300℃. The impact of the annealing process on the composition, crystal structure, and surface morphology of the thin film was investigated. In addition, superstrate heterojunction solar cells based on the annealed film as a buffer layer and tin sulphide as an active layer were fabricated and characterized. They showed diode-like behavior under dark condition and a relatively small photovoltaic effect under AM1.5 illumination condition.