The present study investigated the effect of as-built and post heat-treated microstructures of IN738LC alloy fabricated via selective laser melting process on high temperature oxidation behavior.The as-built microstru...The present study investigated the effect of as-built and post heat-treated microstructures of IN738LC alloy fabricated via selective laser melting process on high temperature oxidation behavior.The as-built microstructure showed fine cell and columnar structure due to high cooling rate.Ti element segregation was observed in inter-cell/inter-columnar area.After post heat-treatment,the initially-observed cell structure disappeared,instead bimodal Ni_3(Al,Ti)particles formed.High temperature(1273 K and 1373 K)oxidation test results showed parabolic oxidation curves regardless of temperature and initial microstructure.The as-built IN738LC fabricated via the selective laser melting process displayed oxidation resistance similar to or slightly better than that of IN738LC fabricated via wrought or cast process.Heat-treated SLM IN738LC,although had similar oxidation weight-gain values to those of the SLM asbuilt material at 1273K,showed relatively better oxidation resistance at 1373 K.Bimodal Ni_3(Al,Ti)precipitate formed in the post heat treatment changed the local chemical composition,thereby led to changes in alumina former/chromia former location and fraction on the alloy surface.It was concluded that in heat-treated IN738LC increased alumina former fraction was found,and this resulted in excellent oxidation resistance and relatively low weight-gain.展开更多
基金the Fundamental Research Program of the Korea Institute of Materials Science(Grant No.PNK5520)Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0002007,The Competency Development Program for Industry Specialist)。
文摘The present study investigated the effect of as-built and post heat-treated microstructures of IN738LC alloy fabricated via selective laser melting process on high temperature oxidation behavior.The as-built microstructure showed fine cell and columnar structure due to high cooling rate.Ti element segregation was observed in inter-cell/inter-columnar area.After post heat-treatment,the initially-observed cell structure disappeared,instead bimodal Ni_3(Al,Ti)particles formed.High temperature(1273 K and 1373 K)oxidation test results showed parabolic oxidation curves regardless of temperature and initial microstructure.The as-built IN738LC fabricated via the selective laser melting process displayed oxidation resistance similar to or slightly better than that of IN738LC fabricated via wrought or cast process.Heat-treated SLM IN738LC,although had similar oxidation weight-gain values to those of the SLM asbuilt material at 1273K,showed relatively better oxidation resistance at 1373 K.Bimodal Ni_3(Al,Ti)precipitate formed in the post heat treatment changed the local chemical composition,thereby led to changes in alumina former/chromia former location and fraction on the alloy surface.It was concluded that in heat-treated IN738LC increased alumina former fraction was found,and this resulted in excellent oxidation resistance and relatively low weight-gain.