期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Positively charged carbon electrocatalyst for enhanced power performance of L-ascorbic acid fuel cells 被引量:1
1
作者 myounghoon choun Hye Jin Lee Jaeyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第5期793-797,共5页
Carbon surface with large oxygen and carbon ratio(O/C) indicated an outstanding electro-catalytic activity toward L-ascorbic acid oxidation, compared to platinum group metals. However, interrelation of surface functio... Carbon surface with large oxygen and carbon ratio(O/C) indicated an outstanding electro-catalytic activity toward L-ascorbic acid oxidation, compared to platinum group metals. However, interrelation of surface functional groups and its electro-catalytic activity is still unclear. In this paper, we prepared different levels of oxidized carbons by a simple acid treatment and investigated the correlation between the surface oxygen functional groups of acid-treated carbon and electro-catalytic activity in an electrooxidation of L-ascorbic acid. Positively charged carbon was demonstrated by lone pair electron of oxygen from valence band spectra study. It was revealed that the positively charged carbon, especially involved in carbonyl, showed enhanced the electro-catalytic activity through both better adsorption of negatively charged reactants and lowered LUMO by electronegativity of oxygen. 展开更多
关键词 Vitamin-C electrooxidation ELECTRONEGATIVITY CARBON Atomic charge Surface oxygen
下载PDF
Electro-oxidation of mixed reactants of ethanol and formate on Pd/C in alkaline fuel cells
2
作者 myounghoon choun Jaeyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第4期683-690,共8页
Direct ethanol fuel cells have attracted attention as an alternative energy technology due to several advantages such as high theoretical energy density and abundant supply of ethanol.In spite of the advantages,commer... Direct ethanol fuel cells have attracted attention as an alternative energy technology due to several advantages such as high theoretical energy density and abundant supply of ethanol.In spite of the advantages,commercialization of direct ethanol fuel cells is hampered by the relatively low performance caused by its slow oxidation kinetics and difficulty of complete oxidation.In this study,formate,which has relatively faster oxidation kinetics,was mixed with ethanol to compensate the latter’s sluggish kinetics.Effects of p H,concentration,scan rate,and temperature on the mixed reactants oxidation on Pd were investigated by electrochemical experiments such as potential sweep and potentiostatic methods.Furthermore,the potential of the mixed reactants as fuel was evaluated by single cell experiments.As a result,we demonstrate that mixing formate with ethanol results in enhanced power performance in a single cell system. 展开更多
关键词 ETHANOL FORMATE Mixed reactants Alkaline media PALLADIUM Electro-oxidation
下载PDF
Atomic layer deposition of ultrathin layered TiO_2 on Pt/C cathode catalyst for extended durability in polymer electrolyte fuel cells
3
作者 Sangho Chung myounghoon choun +2 位作者 Beomgyun Jeong Jae Kwang Lee Jaeyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期256-262,共7页
This study shows the preparation of a TiO2 coated Pt/C(TiO2/Pt/C) by atomic layer deposition(ALD),and the examination of the possibility for TiO2/Pt/C to be used as a durable cathode catalyst in polymer electrolyt... This study shows the preparation of a TiO2 coated Pt/C(TiO2/Pt/C) by atomic layer deposition(ALD),and the examination of the possibility for TiO2/Pt/C to be used as a durable cathode catalyst in polymer electrolyte fuel cells(PEFCs). Cyclic voltammetry results revealed that TiO2/Pt/C catalyst which has 2 nm protective layer showed similar activity for the oxygen reduction reaction compared to Pt/C catalysts and they also had good durability. TiO2/Pt/C prepared by 10 ALD cycles degraded 70% after 2000 Accelerated degradation test, while Pt/C corroded 92% in the same conditions. TiO2 ultrathin layer by ALD is able to achieve a good balance between the durability and activity, leading to TiO2/Pt/C as a promising cathode catalyst for PEFCs. The mechanism of the TiO2 protective layer used to prevent the degradation of Pt/C is discussed. 展开更多
关键词 Polymer electrolyte hydrogen fuel cells Atomic layer deposition Gas diffusion layer Protective layer Titanium dioxide
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部